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ABSTRACT

In this dissertation, we use frequency domain methods to address issues related to
identification and estimation in linearized dynamic stochastic general equilibrium (DSGE)
and stochastic volatility models.

The first chapter provides a necessary and sufficient condition for the local identifica-
tion of the structural parameters based on the (first and) second order properties of the
linearized DSGE model. The condition is flexible and simple to verify. It is extended
to study identification through a subset of frequencies, partial identification, conditional
identification, and constrained identification. When lack of identification is detected. the
method can be used to trace out nonidentification curves. For estimation in nonsingular
systems, we consider a frequency domain quasi-maximum likelihood (FDQML) estimator
and present its asymptotic properties, which can be different from existing results due to the
structure of the DSGE model. Finally, we discuss a quasi-Bayesian procedure for estima-
tion and inference that can incorporate relevant prior distributions and is computationally
attractive.

The second chapter analyzes a popular medium scale DSGE model of Smets and

Wouters (2007) using the framework developed in the previous chapter. For identification,

iv



in addition to checking parameter identifiability, we derive the corresponding nonidentifi-
cation curve. For estimation and inference, we contrast estimates obtained using the full
spectrum with those using only the business cycle frequencies to find notably different
parameter values and impulse response functions. A further comparison between the non-
parametrically estimated and model implied spectra suggests that the business cycle based
method delivers better estimates of the features that the model is intended to capture.
The final chapter proposes an FDQML estimator of the integrated volatility of financial
assets in the noisy high frequency data setting. The approach allows for the microstruc-
ture noise to be a stationary linear process, and is analytically tractable. In practice, we
approximate the noise process by a finite order autoregression, where the order is chosen
using the Akaike information criterion (AIC). The simulation study shows that the finite
sample performance of the estimator is very similar to its time domain analogue in the case
of i.i.d. noise, and is substantially better when more sophisticated noise specifications are

considered.
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Chapter 1

Identification and Frequency Domain QML
Estimation of Linearized DSGE Models (with
Zhongjun Qu)

1.1 Introduction

The formal quantitative analysis of dynamic stochastic general equilibrium (DSGE) models
has become an important subject of modern macroeconomics. It is typically conducted in
the time domain using a state space representation with the aid of Kalman or particle
filtering, see An and Schorfheide (2007) and Ferndndez-Villaverde (2010) for reviews of
related literature. This chapter considers issues related to identification, inference, and
computation from a spectral domain perspective. The goal is to present a unified framework
for identifying and estimating linearized DSGE models based on the mean and the spectrum
of the underlying process.

The identification of DSGE models is important for both calibration and formal sta-
tistical analysis, although the relevant literature is relatively sparse. Substantial progress
has been made recently, notably by Iskrev (2010) and Komunjer and Ng (2011), and by
Canova and Sala (2009), Consolo, Favero and Paccagnini (2009) and Fukag, Waggoner and
Zha (2007). Komunjer and Ng (2011) documented that an inherent difficulty in the iden-
tification analysis is that the reduced form parameters (i.e., the ones appearing directly in

the solution of the model) are in general not identifiable, thus the traditional approach of



identifying structural parameters from the reduced form breaks down. Also, the solution
system of a DSGE model can be singular (i.e., when the number of observed endogenous
variables is greater than the number of exogenous shocks), which constitutes an additional
layer of conceptual difficulty. They provided necessary and sufficient conditions for the local
identification of the dynamic parameters by exploiting the dynamic structure of the model.
Our identification analysis is distinctly different from theirs and other related work in the
literature. Specifically, we work in the frequency domain, treating the spectral density as
an infinite dimensional mapping, and delivering simple identification conditions applicable
to both singular and nonsingular DSGE systems without relying on a particular (say, the
minimal state) representation.

We first focus on the identification of the dynamic parameters from the spectrum.
We treat the elements of the spectral density ﬁatrk as mappings from the structural
parameter space to complex valued functions defined over [—m, 7] in a Banach space. Then
the parameters are locally identified if and only if the overall mapping is locally injective
(that is, if any local change in parameter values leads to a different image). This leads to a
necessary and sufficient rank condition for local identification, which depends on the first
order derivative of the spectral density matrix with respect to the structural parameters of
interest. Depending on the model at hand, the resulting condition can be easily evaluated
analytically or numerically. The result is general because the assumptions mainly involve
the uniqueness of the DSGE solution (i.e., determinacy) and the continuity and smoothness
of the spectral density matrix. Note that although the identification condition is formulated
in the spectral domain, it has a time domain interpretation as well. Specifically, under some
regularity condition that ensures a one-to-one mapping between the spectral density matrix

and the autocovariance functions, the condition is also necessary and sufficient for local



identification through the complete set of autocovariances. Next, we incorporate the steady
state parameters into the analysis and study identification through both the first and second
order properties of the process. The result we obtain is analogous to the previous case with
the addition of an extra term depending on the steady state parameters. When interpreted
in the time domain, this condition is necessary and sufficient for local identification through
the mean and the complete set of autocovariances.

We discuss various extensions of these two identification results. (i) We study identifi-
cation through a subset of frequencies. This is relevant for situations where it is desirable to
construct estimators based on a subset of frequencies to minimize the effect of unmodeled
seasonality or measurement errors. (ii) We consider partial identification, i.e., identifying a
subset of parameters without making identification statements about the rest. (iii) We give
a necessary and sufficient condition for conditional identification, i.e., the identification of a
subset of parameters while holding the values of the other parameters fixed at some known
value. (iv) We also study identification under general nonlinear parameter constraints. For
example, this allows us to constrain some monetary shocks to have no long run effect on
real variables, which can be easily formulated as a set of restrictions on the spectral density
matrix at frequency zero. The second and third extensions are motivated by Komunjer and
Ng (2011), although the assumptions they used are different. The first extension is new. It
provides the identification foundation for inference based on a subset of frequencies studied
later in the chapter.

Furthermore, when lack of identification is detected, our method can be used to trace
out parameter values that yield processes with identical (first and) second order properties.
We suminarize the path of these values via nonidentification curves and provide a simple

algorithm to obtain them. It appears that our work is the first to deliver such curves. They



can serve three purposes. First, because they showcase which parameters are unidentified
and their equivalent parameter values, they are useful for building a DSGE model. Sec-
ond, because they characterize the size of the nonidentified local neighborhood, they are
useful for inference. In particular, if the neighborhood is very small, then the lack of local
identification arguably may not be a great threat to inference that assumes identification
nonetheless; otherwise, serious thoughts should be given. Third, the curves can be embed-
ded into a procedure to ensure the robustness of the identification analysis. This point is
elaborated using an example in Section 1.3.2.

We illustrate the proposed method using a model considered by An and Schorfheide
(2007) and document a serious concern about the identification of the parameters in the
Taylor rule equation. The result shows that when varying parameters in this equation
along a certain path, the (mean and) spectrum of the observables stay the same; thus it is
impossible to uniquely pin down the parameter values even with an infinite sample. The
values on the curve suggest that in this model it is impossible to distinguish between a
hawkish rule (a long run policy coefficient of 1.57 on inflation and 0.00 on output, resulting
in respective Taylor rule weights of 0.41 and 0.00) and a more dovish rule (0.99 on inflation
and 1.00 on output, with Taylor rule weights of 0.20 on each). To our knowledge, the
current work is the first to document such an identification feature about the Taylor rule
parameters.

As will become clear, our results, as well as their proofs, are closely connected to
Rothenberg (1971), who considered identification of parametric econometric models from
the density functions and provided rank conditions based on the information matrix. How-
ever, there exists an important difference. Namely, in our analysis, the spectral density

is a complex valued matrix that may be singular. Under singularity, the conventional in-



formation matrix does not exist. This generates some conceptual and technical difficulties
that do not arise in Rothenberg (1971). Consequently, our condition is based on a criterion
function different from the information matrix. We further show that when restricting
to the nonsingular special case, our condition is equivalent to evaluating the rank of the
information matrix. Therefore, the condition of Rothenberg (1971) still applies, albeit only
to nonsingular models.

An identification result is useful only if it corresponds to an estimator. This motivates
the consideration of the frequency domain quasi-maximum likelihood (FDQML) estimation
in this chapter. The FDQML approach was first proposed by Whittle (1951). Its statistical
properties have been studied by, among others, Dunsmuir and Hannan (1976), Dunsmuir
(1979) and Hosoya and Taniguchi (1982) in the statistics literature. In the economics
literature, Hansen and Sargent (1993) derived the FDQML as an approximation to the
time domain Gaussian quasi-maximum likelihood (QML) and used it to understand the
effect of seasonal adjustment in estimating rational expectations models. Diebold, Ohanian
and Berkowitz (1998) laid out a general framework for estimation and model diagnostics
based on a full second order comparison of the model and data dynamics. Their criterion
function includes FDQML as a special case.

The contribution of this chapter in the area of FDQML estimation is threefold. First,
we formally establish the link between the identification result and the property of the
estimator by showing that the rank condition derived is necessary and sufficient for the
estimator to be asymptotically locally unique. Therefore, the identification result is em-
pirically relevant. Second, we derive the limiting distribution of the estimator under mild
conditions. Finally, we discuss a computationally attractive method to obtain the es-

timates, following the approach of Chernozhukov and Hong (2003). In addition to the



computational advantage, it allows us to impose priors on the parameters, thus having a
(quasi) Bayesian interpretation. Note that the above results allow for estimation using only
a subset of frequencies.

In addition to the above mentioned papers, there exists a small but growing literature
that exploits the merits of estimation and diagnosis of econometric models in the spectral
domain. Engle (1974) considered band spectrum regressions and demonstrated their value
in dealing with errors in variables and seasonality. Altug (1989) applied FDQML to es-
timate models with additive measurement errors. Watson (1993) suggested plotting the
model and data spectra as one of the most informative diagnostics. Berkowitz (2001) con-
sidered the estimation of rational expectation models based on the spectral properties of
the Euler residuals. Also, see Christiano, Eichenbaum and Marshall (1991) and Christiano
and Vigfusson (2003) for applications of FDQML to various problems. We believe that the
identification, estimation, and computational results obtained in this chapter can be useful
to further develop the literature in this field and to facilitate estimation and comparison of
more sophisticated models.

The chapter is organized as follows. The structure of the DSGE solution is discussed
in Section 1.2. Section 1.3 considers the local identification of the structural parameters
together with an algorithm to trace out nonidentification curves and an illustrative ex-
ample. The FDQML estimator and its asymptotic properties are studied in Section 1.4.
The discussion on interpretation of the estimates in misspecified models is also included.
Section 1.5 presents a quasi-Bayesian approach for computation and inference. Section 1.6
concludes. All proofs are contained in the mathematical appendix 1. Section 1.8 contains
relevant tables and figures.

The following notation is used. |z| is the modulus of z; the imaginary unit is denoted



by i. X* stands for the conjugate transpose of a complex valued matrix X. For a random
vector 1;, Tiq denotes its a-th element. For a matrix A, Ay stands for its (a, b)-th entry.
If fy € R* is a differentiable function of § € RP, then dfp,/3¢’ is a k x p matrix of partial
derivatives evaluated at 6. “—P” and “—%" signify convergence in probability and in

distribution. And O,(-) and op(-) are the usual symbols for stochastic orders of magnitude.

1.2 The model

Suppose a discrete time DSGE model has been solved and log linearized around the steady
state. Assume the solution is unique. Let Y;%() be the log deviations of endogenous
variables from their steady states with 8 being a finite dimensional structural parameter
vector containing the dynamic parameters. Y,%(8) can be represented in various ways, and
our method does not rely on a particular representation. To maintain generality, we only

assume that they are representable as

YA0) =D hi(0)ers, (1.1)
j=0

where h;(8) (j =0, ...,00) are real valued matrices of constants and {e;} is a white noise
process of unobserved structural shocks. The dimensions of the relevant variables and

parameters are
Ytd(ﬁ):ny x1, €:n.x1l, hijf):nyxn, 6:gx1.
Let H(L;0) denote the matrix of lagged polynomials, i.e.,

H(L;8) = i hi(8)L’. (1.2)
j=0



Then, Y;%(6) can be written concisely as

Y2(0) = H(L; 6)e:. (1.3)

Remark 1.1. We work directly with the vector moving average representation (1.3) without
assuming invertibility, i.e., & = 322 g (H)Yt‘f_j(ﬂ) for some g;(6). Invertibility is restric-
tive because it requires ny > n.. Consequently, we allow for both ny > n, and ny < n..
Note that the system is singular if ny > n..

Assumption 1.1. {e:} satisfies E(e;) = 0, E(ese;) = L(0) with £(6) being a finite n. x n,
matriz for all 0, and E(eie,) = 0 for all t # 5. 332 otr(h;(0)E(0)h;(8)') < co.
Assumption 1.1, along with (1.1), implies that Y;%(#) is covariance stationary and has

a spectral density matrix fg(w) that can be written as
1 . ) *
fo(w) = 5~ H(exp(~iw); §)£(8) H (exp(~iw); )", (1.4)

where X* denotes the conjugate transpose of a generic complex matrix X. To illustrate
the flexibility of the above framework, we consider the following two examples.

Example 1.1. Consider a linear rational ezxpectations system as in Sims (2002) (in this
ezample and the next, we omit the dependence of the parameters on 8 to simplify notation),

P()St = FlSt-] + ‘I’Zt + Hf]t, (15)

where S; is a vector of model variables that includes the endogenous variables and the
conditional expectation terms, Z, is an erogenously evolving, possibly serially correlated,
random disturbance, and 1, is an ezxpectational error. Models with more lags or with lagged
expectations can be accommodated by expanding the S; vector accordingly. Then, under
some conditions (Sims (2002, p. 12)), the system can be represented as

e o]
Se = 0151+ 00Zt + Os ) 6} '02E Zj, (1.6)
j=1
where Oy, 01,05,0¢, and Oz are functions of I'o,I'y, ¥, and I1. Assuming Z; follows a

vector linear process (for example, Zy11 = ®Z; +€141), we then have Sy = ©,5;-1 + B(L)¢
for some lag polynomial matriz B(L), implying S; = (I — ©,L) ! B(L)e;.



Let A(L) be a matriz of finite order lag polynomials that specifies the observables such

that
Y2 = A(L)S,.

Then we have
Y2 = A(L)I - ©,L)"' B(L)e:.

Therefore, the spectral density of Y2 is given by (1.4) with H(L;8) = A(L)(I-6,L)"'B(L).

Remark 1.2. In the above ezample, the matriz A(L) offers substantial flexibility since it
allows us to study identification and estimation based on a subset of variables (equations) or
a linear transformation of them. To see this, suppose S; includes two endogenous variables
z: and wy. Then A(L) can be chosen such that Y includes only z, but not w, or includes
Ty — x4-1 but not x;. Consequently, it is straightforward to analyze DSGE models with
latent endogenous variables simply by assigning zeros and ones to the entries of A(L). We
illustrate the specification of A(L) in Section 1.3.2 through a concrete example. Note that
such analysis is permitted because we do not impose restrictions on the relation between ny

and n..

Example 1.2. Another representation used in the literature by, among others, Uhlig
(1999), s

kivi = Pk +Qz,
wy = R]Ct + S 2ty
241 = Wz + e,
where k; is a vector of observed endogenous (state) variables whose values are known at

time t, w, is a vector of observed endogenous (jump) variables, 2 has the same definition
as in the previous example, and P, Q, R, S, and ¥ are matrices of constants depending on

W:(f). (1.7)

Then the spectral density of Y2 is given by (1.4) with

L'g-prr) 0\ '[ @
-R I s

the structural parameter . Let

H@ﬂﬁ:( )u-wa“.

Again, one can study identification and estimation based on a subset of equations or a linear
combination of them by picking an appropriate A(L) and considering Y;¢ = A(L)(k}, w})’
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instead of (1.7), which corresponds to

_ -1
H(L;0)=A(L)(L l[f_;PL] (I’) (‘;)[I—M]—l. (1.8)

As becomes clear later, if estimating the dynamic parameters is the main objective,
then it is not necessary to specify the steady states of the DSGE solution. However, in
some cases one may be interested in estimating the dynamic and steady state parameters
jointly, for example, for conducting welfare analyses. Our framework permits this. First,
recall that 6 denotes the dynamic parameter vector. Importantly, parameters that affect
both the steady states and the log deviations are treated as dynamic, and thus are included
in 6. Next, let a denote the parameters that affect only the steady states, which is possibly

a nmull set in some DSGE models. Finally, define the augmented parameter vector
é - (0’, a/)l

and assume that the observables (Y;) are related to the log deviations (Y;%()) and the
steady states (u(f)) via

Y, = u(B) + Y2(6).

The above expression acknowledges that in DSGE models the constant term p typically
depends on both 8 and a. In the remainder of the chapter, we examine the identification

and estimation of @ based on the properties of fy(w) alone, and of § based jointly on ()

and fo(w).

1.3 Local identification of structural parameters

We first consider the identification of § at some fp and subsequently of § at some 8. The

next assumption imposes some restrictions on the parameter space.
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Assumption 1.2. 8 € © C R? and § € © C RP*? with © and © being compact and convez.
Assume 0y and Gy are interior points of © and ©, respectively.

Note that for identification analysis alone, we do not require the compactness and
convexity assumptions on © and ©. However, they are needed to study the asymptotic
properties of the parameter estimates.

The concept for location identification is defined in the same way as in Rothenberg
(1971, see his Definition 3).

Definition 1.1. The dynamic parameter vector 6 is said to be locally identifiable from the
second order properties of {Y;} at a point 8y if there exists an open neighborhood of 6y in
which fa,(w) = fo,(w) for all w € [—m, 7] implies 6y = 6,.

The above concept is formulated in the frequency domain. However, there is an equiv-
alent formulation in the time domain in terms of autocovariance functions. Specifically,
suppose {Y;} satisfy Assumption 1 with autocovariance function I'(k) (k = 0, 1, ...) satis-
fying I'(k) = I'(—k) and that fg(w) is continuous in w. Then Theorem 1” in Hannan (1970,
p. 46) implies that there is a one-to-one mapping between I'(k) (k = 0,+1,...) and fg(w)
(w € [—m,7]) given by

n

(k) = /exp(z’kw)fg(w)dw.

-

Therefore, 0 is locally identifiable from fg(w) if and only if it is locally identifiable from the

complete set of autocovariances {I'(k)}32 __ of Y;.

—oo

The spectral density matrix has n%» elements. Each element can be viewed as a map
from © to complex valued functions defined over [—m, 7] in a Banach space. Therefore, the
parameters are locally identified at 8y if and only if the overall mapping is locally injective

(i.e., any local change in parameter values will lead to a different image for some element).

The mappings are infinite dimensional and difficult to analyze directly. However, it turns
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out the identification can be characterized by a finite dimensional matrix. To state this

precisely, we start with the following assumption.

Assumption 1.3. The elements of fg(w) are continuous in w, and continuous and differ-
entiable in 6. The elements of the derivatives dvec(fo(w))/08' are continuous in 6 and w.
Let

"

oo - | (8v60(fo(w)'))' (Buectioled)) o, 19)

a9 a¢’

Assume there erists an open neighborhood of 6y in which G(6) has a constant rank.

This first part of the assumption requires the spectral density to be smooth with con-
tinuous first order derivatives. The second part requires 6p to be a regular point of the
matrix G(6). These assumptions are quite mild. Note that in the definition of G(8), the
primes denote simple transposes rather than conjugate transposes. Alternatively, we can

also write G(0) as

s

/ (avec(’(jge(w)))‘ (a”ecégf(w))> dw,

-7

where the asterisk now denotes the conjugate transpose.

Remark 1.3. The dimension of G(8) is always q x q and independent of ny or n.. Its
(4, k)-th element is given by

[ [ 0fs(w)dfo(w)
ij({)):/tr{—ab;—— aok }d&d

-7

We use this representation to compute G(8) in the application in Section 1.8.2. Lemma
1.2 in Section 1.7 provides another representation, showing explicitly that the integrand of
G(0), therefore G(8) itself, is real, symmetric, and positive semidefinite. This feature is
useful for proving the subsequent theoretical results.

Theorem 1.1. Let Assumptions 1.1-1.3 hold. Then 8 is locally identifiable from the second
order properties of {Y;} at a point 8y if and only if G(6y) is nonsingular.

The main computational work in obtaining G(fp) is to evaluate the first order derivatives

and to compute the integral. This is typically straightforward using numerical methods.
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First, divide the interval [—x, 7] into /N subintervals to obtain (N + 1) frequency indices.
Let ws denote the s-th frequency in the partition. Then 3fg,(w;)/06; can be computed

numerically using a simple two-point method,

f00+e,~hj (ws) - foo (ws)
h;

j=1,.,N+1,

where e; is a ¢ x 1 unit vector with the j-th element equal to 1, and h; is a step size that
can be parameter dependent. In practice, to obtain the right hand side quantity, we only
need to solve the DSGE model twice, once using 6 = 6y and once with § = 6y +e;h;. After

this is repeated for all parameters in 8, we can compute G ;(6o) using
2r SR, [ 0folus) Ofoles)
N +1 ~ 06, 39, '

Note that no simulation is needed in this process. For the model considered in Section

1.3.2 (An and Schorfheide (2007)) the computation takes less than a minute to finish with
N = 9999.

Because G(6) is real, symmetric, and positive semidefinite, its eigendecomposition al-
ways exists. Therefore, the rank of G(p) can be evaluated using an algorithm for eigenvalue
decomposition and counting the number of nonzero eigenvalues.

Theorem 1.1 is closely related to Theorem 1 in Rothenberg (1971), who considered
identification in parametric models. In his case, fg(w) is replaced by the parametric den-
sity function and G(0) is simply the information matrix. Since the information matrix
describes the local curvature of the log likelihood as a function of 8, its rank naturally pro-
vides a measure for identification, for lack of identification is simply the lack of sufficient
information to distinguish between alternative structures. In our case, the result is equally

intuitive, since the parameters are locally identified if and only if any deviation of the pa-
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rameters from 6y leads to different mappings for fg(w). We now state a result that formally
establishes the link with Rothenberg’s (1971) condition. Note that under Gaussianity the

information matrix is given by’
"
_ 1 [ ovec(foo(w)) (ro1/ v o £-1 Avec (foo(w))
160) = 5 [ T iy o () Tt

-7

which is defined only if the system is nonsingular. We restrict our attention to such a

situation.

Corollary 1.1. Let Assumptions 1.1-1.3 hold. In addition, assume fp,(w) has full rank
for all w € [—m, 7). Then G(6p) and I(6y) have the same rank. Also, for any ¢ € RY,
G(60)c = 0 if and only if I(6p)c = 0.

Therefore, Rothenberg’s (1971) condition applies to DSGE models, albeit only to non-
singular systems. Because G(6y) and I(fp) share the same null space, they deliver the same
information about nonidentification. The issue of nonidentification is further addressed in
Section 1.3.1.

Given the insight conveyed by Theorem 1.1, it becomes straightforward to study the

identification of # based on both first and second order properties of the process.

Definition 1.2. The parameter vector 8 is said to be locally identifiable from the first and
the second order properties of {Y;} at a point 6y if there exists an open neighborhood of 8y
in which p(81) = u(Bo) and fa, (w) = fao(w) for allw € [—m, 7] implies y = ;.

Assumption 1.4. The elements of u(0) are continuously differentiable with respect to 8.
Let

n

(@) = / (6vec(a{0_ol(w)’))' (avecégj(w))) dio + %g)’ ag_é_;ﬁ) ’

Assume there ezists an open neighborhood of 8y in which G(8) has a constant rank.

Remark 1.4. G(0) is a (p+ q) x (p + q) matriz. The first term is a bordered matriz,
consisting of G(0) with p rows and columns of zeros appended to it. Both terms are positive

}Under Gaussianity, I(fo)~" is the asymptotic covariance matrix of the FDQML estimator based on the
full spectrum, see Section 1.4, in particular Theorem 1.3 and the expression (1.18) that follows.
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semidefinite, hence taking the sum cannot decrease the rank. Also note that the (j,k)-th

element of G(0) is given by

[ [ Bfaw) Bfs(w) a(8Y 9u(B)

-7

Theorem 1.2. Let Assumptions 1.1-1.4 hold. Then 8 is locally identifiable from the first
and second order properties of {Y;} at a point 8y if and only if G(By) is nonsingular.

Theorems 1.1 and 1.2 can be further extended in various directions. In what follows,
we discuss four such extensions.

DSGE models are often designed to explain business cycle movements, not very long run
or very short run fluctuations. At the latter frequencies, such models can be severely mis-
specified. It is therefore important to consider estimation and inference based on business
cycle frequencies only. Such consideration may also arise due to concerns about unmodeled
seasonality or measurement errors; see Hansen and Sargent (1993), Diebold, Ohanian and
Berkowitz (1998), and Berkowitz (2001). We now present a result that lays the identi-
fication foundation for such an analysis. Let W(w) denote an indicator function defined
on [—m,n] that is symmetric around zero and equal to one over a finite number of closed
intervals. Extend the definition of W(w) to w € [, 27] by using W(w) = W(2r — w).2

Define the matrices

G"(8)

{/W( )(aveca{;,( )))'(avec(gge(w)))dw},

AW an dec(fo(w))\' [ dvec(fo(w)) Au(8) ou(6)
@) = /W( ) (Zrecifolel) ) (Secalel) g, § 4 BV

Corollary 1.2. (Identification from a subset of frequencies)

2This extension is needed for FDQML estimation since the objective function involves summation over
wj = 2n/T, .., 2n(T — 1)/T; see (1.15).
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1. Let Assumptions 1-3 hold, but with G(8) replaced by GW (8). Then 8 is locally iden-
tifiable from the second order properties of {Y:} through the frequencies specified by
W (w) at a point 8y if and only if GY (6g) is nonsingular.

2. Let Assumptions 1-4 hold, but with G(9) replaced by GY (8). Then 8 is locally identifi-
able from the first and second order properties of {Y:} through the frequencies specified
by W (w) at a point 8y if and only if GW (8,) is nonsingular.

The proof is the same as for Theorems 1.1 and 1.2, because W(w) is a nonnegative real

valued function; therefore, it is omitted. Note that because the quantities

(Bvec(aj;g’(w)’) )' <8vec{(3g (w)) )

are positive semidefinite for any w € [—m, 7], the difference G(6p) — GW (8p) is always
positive semidefinite. This ensures that if 6y is identified using a subset of frequencies, it
is also identified if considering the full spectrum. The converse does not necessarily hold.
The same statement can be made about the relation between G(8) and G% ().

The second extension concerns the identification of a subset of parameters without
making identification statements about the rest (partial identification). Specifically, let 6°
be a subset of parameters from 8. We say it is locally identified from the second order
properties of {Y;} if there exists an open neighborhood of 6§y in which fg, (w) = fg,(w)for
all w € [—m, 7] implies 8§ = 6;. Note that, as in Rothenberg (1971, footnote p. 586), the
definition does not exclude there being two points satisfying fy, (w) = fg,(w) and having 6°
arbitrarily close in the sense of ||6§ — 85| / ||6o — 61]| being arbitrarily small. Analogously,
we can define the identification of a subset of 8, say 8%, based on the first and second order
properties. The following result is a consequence of Theorem 8 in Rothenberg (1971), which
can be traced back to Wald (1950) and Fisher (1966).

Corollary 1.3. (Partial identification)
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1. Let Assumptions 1.1-1.8 hold. Then 0° is locally identifiable from the second order
properties of {Y;} at a point 6§ if and only if G(6p) and

arn _ | G(bo)
(0) = [ 063/96' ]

have the same rank.

2. Let Assumptions 1.1-1.4 hold. Then 8* is locally identifiable from the first and second
order properties of {Y;} at a point 83 if and only if G(6p) and

~a(j G(8o)

G% () = N

(%) [ 863/69 ]

have the same rank.

The proof is provided in Section 1.7. Furthermore, one may be interested in studying
the identification of a subset of parameters while keeping the values of the others fixed at

6o (conditional identification). The result for this extension is formally stated below.

Corollary 1.4. (Conditional Identification).

1. Let Assumptions 1.1-1.3 hold. Then a subvector of 8, 6°, is conditionally locally
identifiable from the second order properties of {Y:} at a point 8y if and only if

n

G(6o)° = / (avec(af:;(w)'))’ (Ovec(%z? (w))) o

is nonsingular.

2. Let Assumptions 1.1-1.4 hold. Then, a subvector of 8, 8°, is conditionally locally
identifiable from the first and second order properties of {Y;} at a point 8y if and only

if

m

G’(éo)‘ — / (8066(6%0:’(“))’)) (6vecé§z,:(w))) dw + aﬂa(g:))/ agéf?)

is nonsingular.

The proof is the same as for Theorems 1.1 and 1.2 because G(6p)® and G(fp)* have the

same structure as G(p) and G(fp), but with derivatives taken with respect to a subset of
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parameters. Therefore the detail is omitted. Comparison between Corollaries 1.3 and 1.4
suggests that the latter is often practically more relevant and its result is also simpler to
interpret; we therefore expect it to be more frequently applied in practice.

Next, we consider identification under general constraints on the parameters. One
potential example is that shocks to monetary variables have no long term effect on real
variables, which can be formulated as a set of restrictions on the spectral density at fre-
quency zero.

Corollary 1.5. (Identification under general constraints)

1. Let Assumptions 1.1-1.8 hold. Suppose 0y satisfies ¥(6y) = 0 with ¥(0) a k x 1
constraint vector continuously differentiable in 8. Define the Jacobian matriz W ()
with the (j,1)-th element given by

;i (6) = 0v;(6)/00,.

Suppose 0y is a regular point of both G(0) and ¥(0). Then 0 satisfying ¥(0) = 0 is
locally identified from the second order properties of {Y:} at a point 8y if and only if

[ G(6o) ]
¥(6o)

2. Let Assumptions 1.1-1.4 hold and let the other conditions stated in part 1 of this
corollary hold with @ replaced by 8. Then, 0 satisfying ¥(6) = 0 is locally identified
from the first and second order properties of {Y;} at a point 8y if and only if

G(6o) ]
¥(6o)

has full column rank equal to gq.

has rank (q + p).

Note that Corollary 1.5 can also be used to study conditional identification, because
the latter is a special case of simple linear restrictions. However, Corollary 1.4 is simpler

to apply, especially if the dimension of 6° is much smaller compared to that of 4. Clearly,
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Corollaries 1.3-1.5 can be applied in conjunction with Corollary 1.2 to study identification
through a subset of frequencies.

We now compare the above analysis with those of Iskrev (2010) and Komunjer and Ng
(2011). Iskrev (2010) suggested to identify the parameters from the mean and the first T
autocovariances of the observables. Because his result (Theorem 2) assumes T is finite, the
resulting conditions are sufficient but not necessary. Meanwhile, the key differences between
our work and Komunjer and Ng (2011) can be summarized along five aspects. First, the
perspective is different. Komunjer and Ng (2011) regarded the solution of a DSGE model
as a minimal system with miniphase. Their condition effectively exploits the implication
of the latter two features for identification. Instead. we regard the spectrum of a DSGE
model as an infinite dimensional mapping. The analysis studies its property under local
perturbation of the structural parameter vector. Second, the assumption is different. We
do not require the solution system to have minimal phase. Therefore, we permit the rank
of the spectral density matrix to vary across frequencies. This is practically relevant. For
example, in Smets and Wouters (2007), the rank of the spectral density is lower at frequency
zero because the first differences of stationary variables are considered. Third, the system
representation requirement is different. Komunjer and Ng (2011) required a minimal state
representation, while we do not. Whatever is the state representation under which the
model is solved (S; in the GENSYS algorithm, for example), the spectral density can be
computed and that is all that is needed. Fourth, the treatment of stochastic singularity
is different. Komunjer and Ng (2011) gave separate results for singular and nonsingular
systems, while our single condition applies to both. Intuitively, this follows because the
dimension of our criterion function is independent of those of the observation vector and the

vector of innovations, but only depends on that of the structural parameter vector. Finally,
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the computation is different. Although both methods require numerical differentiation, it
is applied to different objects. In Komunjer and Ng (2011), it is applied to the coefficient
matrices in the state space representation, while in our case, we compute the derivative of

the spectral density with respect to the structural parameter vector.

1.3.1 Tracing out nonidentification curves

In this section, the discussion focuses on @ because for § the procedure works in the same
way. Suppose Theorem 1.1 or Corollary 1.2 shows that 6 is locally unidentifiable.

First, consider the simple case where G(6) has only one zero eigenvalue. Let c(fp)
be a corresponding real eigenvector satisfying ||c(6p)|| = 1. Then c(6) is unique up to
multiplication by —1 and thus can be made unique by restricting its first nonzero element
to be positive. This restriction is imposed in the subsequent analysis. Let 6(6p) be an open
neighborhood of 6. Under Assumptions 1.1 to 1.3, G(8) is continuous and has only one
zero eigenvalue in (), while ¢(#) is continuous in §(fp). As in Rothenberg (1971), define

a curve x using the function (v), which solves the differential equation

o6(v)
av - C(e))
6(0) = 6o,

where v is a scalar that varies in a neighborhood of 0 such that 6(v) €4(6y). Then, along

X, 8 is not identified at fy because

dvec (fow)(w)) _ Bvec (forw)(w))
v - o6(v)

c(6) =0 (1.10)

for all w € [—, 7], where the last equality uses Assumption 1.3 and the fact that c(8) is the

eigenvector corresponding to the zero eigenvalue (see (1.22) in the mathematical appendix).
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We call x the nonidentification curve.
Clearly, this curve is continuous in v. It is also locally unique, in the sense that there
does not exist another continuous curve containing 8y and satisfying fy, (w) = fg,(w) for

all w € [, m]. We state this result as a corollary:

Corollary 1.6. Let Assumptions 1.1-1.8 hold and let rank(G(6p)) = q — 1. Then, in a
small neighborhood of 6y, there erists precisely one curve passing through 6y that satisfies

fo,(w) = fo,(w) for allw € [—7, 7).

Corollary 1.6 is not a trivial result because it involves infinite dimensional maps. The
key idea in the proof is to reduce the problem to a finite dimensional one by considering
projections of fy(.) associated with finite partitions of [—m, w]. Then a standard constant
rank theorem can be applied. The details of the proof are in Section 1.7.

The nonidentification curve can be evaluated numerically in various ways. The simplest
example is the Euler method. First, obtain c(fp) as described above. Then compute

recursively

0(vj+l) ] 9(’0]') + c(O(v_,-))(vj+1 - Uj), Vj+1 > v; >0,7=01,.., (1.11)

6(vj-1) = O(v;)+ c(0(vj))(vj-1 — v5), vj-1 Sv; L0, j=0,-1,..,

where |vj41 — v;| is the step size, which can be set to some small constant, say h. The
associated approximation error in each step is of order O(h?) if 8(v) has bounded first and
second derivatives. Therefore, the cumulative error over a finite interval is O(h). It is
important to note that because §(6p) is usually unknown, so is the domain of the curve.
However, this is not a problem in practice, because we can first obtain a curve over a wide
support, then resolve the model and compute the spectral density using points on this
curve. The curve can then be truncated to exclude the points that violate determinacy,

the natural bounds of the parameters (e.g., the discount rate, stationary autoregressive
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coefficients), and those yielding fp(w) different from fg,(w).

Next, consider the case where G(6p) has multiple zero eigenvalues. Then, in general,
there exists an infinite number of curves satisfying (1.10), because any linear combination
of the eigenvectors points to a direction of nonidentification. It is not useful to try reporting
all such curves. To see this, suppose 6o = (63,63) and that changing 6! along a certain
curve x1 while keeping 62 fixed at 62 yields identical spectral densities. Also suppose the
same property holds when we vary 62 and fix 6! at 6}, yielding a curve x;. Suppose
the rank of G(6) stays constant in a local neighborhood of 6. Then changing ' and 62
simultaneously can also generate new curves and there are infinitely many of them. In
this example, x1 and x2 contain essentially all the information, as the rest of the curves
are derived from them, and thus it suffices to report only two of them. Motivated by the
above observation, we propose a simple four-step procedure that delivers a finite number of
nonidentification curves. The key idea underlying this procedure is to distinguish between
separate sources of nonidentification by using Corollary 1.4. More specifically, we apply the
rank condition recursively to subsets of parameters to find the ones that are not identified

and depict their observationally equivalent values using curves.

e Step 1. Apply Theorem 1.1 to verify whether all the parameters in the model are

locally identified. Proceed to Step 2 if lack of identification is detected.

e Step 2. Apply Corollary 1.4 to each individual parameter. If a zero eigenvalue of
G(0)® evaluated at 8y is found, then it implies that the corresponding parameter is
not locally conditionally identified. Apply the procedure outlined above to obtain a
nonidentification curve (changing only this element and fixing the value of the others

at 6p). Repeating this for all individual parameters, we obtain a finite number of
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curves, with each curve being a scalar valued function of v.

e Step 3. Increase the number of parameters in the considered subsets of 6y by one at a
time. Single out the subsets with the following two properties: (i) it does not include
the subset detected in previous steps as a proper subset, and (ii) when applying
Corollary 1.4, it reports only one zero eigenvalue. Repeat the procedure outlined
above for all such subsets to obtain nonidentification curves. Note that if the subset

has k elements, then the associated curve is a kx 1 vector valued function of v.

e Step 4. Continue Step 3 until all subsets are considered. Solve the model using pa-
rameter values from the curves to determine the appropriate domain for v. Truncate

the curves obtained in Steps 1 to 4 accordingly.

Step 2 returns nonidentification curves resulting from changing only one element in
the parameter vector. In Step 3, the number of elements is increased sequentially. For
each iteration, the algorithm first singles out parameter subvectors whose elements are
not separately identified. Then only subvectors satisfying the two properties outlined in
Step 3 are further considered. The first property is to rule out redundancy, because if a
k-element subset constitutes a nonidentification curve, including any additional element
(fixing its value or varying it if it itself is not conditionally identifiable) by definition
constitutes another such curve, but it conveys no additional information. The second
property serves the same purpose, because if some subvector yields a G(#)* with multiple
zero eigenvalues, then it must be a union of subvectors identified in previous steps and
containing fewer elements. To see that this is necessarily the case, suppose that for a given
subvector, two zero eigenvalues are reported. Then there exists a linear combination of the

two corresponding eigenvectors that makes the first element of the resulting vector zero.
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Similarly, there is a combination that makes the second element zero. The two resulting
vectors are valid eigenvectors; however, they correspond to lower dimensional subvectors of
6. Now apply Corollary 1.4 to these two subvectors. If single zero eigenvalues are reported,
then it implies that they have already been considered in the previous steps. Otherwise, the
dimension of the subvectors can be further reduced by using the same argument, eventually
leading to the conclusion that they have been previously considered. The general case with
more than two zero eigenvalues can be analyzed similarly.

In Steps 3 and 4, we do not remove any parameter from @ after nonidentification curves
are found. Otherwise, we may fail to detect some curves. To see this, suppose 8 € R*, and
that the subvectors (61, 82) and (6,, 03, 84) form two nonidentification curves. If we removed
61 and 8, from @ after considering two-parameter subsets, then we would miss (61, 83, 64).
Finally, in Step 4, the truncation narrows down the domain of the nonidentification curve,
which can be used, for example, to exclude parameter values that are incompatible with
the economic theory. This is computationally simple to implement in practice because
the domain of any curve is always one dimensional. For illustration, consider the curve
(61(v), 82(v)) and suppose that the economic theory requires the value of 8; to be nonnega-
tive. Then we simply chop off those v with 6, (v) < 0. If the theory also imposes restriction
on 65, then we simply drop those v over which at least one restriction is violated.

This procedure delivers a finite number of curves with the following two features. First.
the curves are minimal in the sense that, for each curve, all elements in the corresponding
subvector have to change to generate nonidentification. Fixing the value of any element
shrinks the corresponding curve to a single point. Second, the curves are sufficient in the
sense that, for any subvector that can generate a nonidentification curve passing through

6o, it or one of its subsets are already included. Finally, the procedure is simple to imple-
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ment because it mainly involves repeated applications of Corollary 4. This simplicity is
achieved because we start with the lowest dimension, thus there is no need to directly han-
dle the situation with multiple zero eigenvalues. It should also be noted that, apart from
evaluating the nonidentification curves, the procedure is not computationally demanding.
Once G(#) is computed in Step 1, the G(8)* for any subvector considered can be obtained
by simply picking out relevant elements of G(8) (see Remark 1.3). Specifically, suppose we
are interested in a particular k-element subvector of 4. If we number parameters inside 6,
and let ® be a set of parameter numbers of interest (i.e., if we want to vary only parameters

1, 2, and 5, then ® = {1,2, 5}), then the (4, j)-th element of G(8)*® is given by
GO):; = GB)sie;r i=1,2,..k j =12,k (1.12)

Also note that in the case of Theorem 1.2, the same logic applies to the term [Ou(6o)’/06°]
[8;1((70) /88%], i.e., having computed it once, one can repeatedly apply Corollary 1.4 by

selecting relevant elements from it and G(8)® in the same fashion as in (1.12).
1.3.2 An illustrative example

To provide a frame of reference, we consider a DSGE model from An and Schorfheide (2007)
whose identification is also studied by Komunjer and Ng (2011). We consider identification
based on the (first and) second order properties and also obtain nonidentification curves.

The log linearized solutions are given by

1
¥y = Eyyps1+ g — Eygeyr — ;_‘(Tt — Eymip1 — Eize4),
(1 -v)
= BE N Yy, —
Lt BEimes1 + = (yt — gt)s
Ct = Yt — G,

e = prre—1+ (1 —pr)hime + (1 — pr)2(ye — g¢) + ere,
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gt = pPgdt—1 -+ €qt,

2t = Prz-1+ €z,

where e;s = €r¢, €t ~ WN(0,02), e ~ WN(0,02), and €,; ~ WN(0, 02) are mutually
uncorrelated shocks, and 7 is the steady state inflation rate. The vector of parameters to
be identified is

= 2 2 2
0 = (T1 ﬁa v, ¢v 7!'2, ’([)111/}27 Pr, pg’ Pz Urvagaaz)'

We use parameter values
8 = (2,0.9975,0.1,53.6797,1.008%,1.5,0.125,0.75,0.95,0.9,0.4,3.6,0.9),3

as given in Table 3 of An and Schorfheide (2007).
We first describe how to compute the spectrum for a given parameter vector. We can

write the model as in (1.5) with

Sy = (2¢, gt, Tt, Ye, Mt €ty Ee(me1), Ee(yea1)). (1.13)

The exact formulations of the matrices I'g,I';, ¥, and IT are omitted here?. We use the
GENSYS algorithm provided by Sims (2002) to obtain the model solution numerically in
the form of (1.6), specifically

St = 0151 + Oo¢y,

where 6, and ©¢ are functions of . The spectral density, as noted before, can then be

3Note that we scale the values for the variances (62,02,02) from An and Schorfheide (2007) by 10°.
This scaling is merely to ensure numerical stability and does not affect any of our conclusions.
4Please refer to the MATLAB code available from the authors’ web pages for details.
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computed using (1.4) with
H(L;6) = A(L)(I - ©,L)"10y.

Given the S; in (1.13) and Y;® = (r¢—1 ¥, ™, ct)’, the matrix A(L) is given by®

0)

00010000

(OOLOOO

o

00001000

\00000100/

Note that the results in this example do not rely on using the solution algorithm of Sims
(2002). Other algorithms considered in the literature (e.g., that in Uhlig (1999)) can be used
to obtain the same conclusions. The algorithm will produce the P, Q, R, S representation
as in (1.7), with kyyy = 74, wy = (v, m, &), andz; = (er¢, g1, 2¢)’. The spectrum can then

be computed as in (1.8).
Analysis based on the second order properties

To compute G(6g), the integral in G(6) is approximated numerically by averaging over
10,000 Fourier frequencies from —4,9997 /5,000 to 4,9997 /5,000 and multiplying by 2.
The results reported are robust to varying the number of frequencies between 5,000 and
10,000. The step size for the numerical differentiation® is set to 1077 x §y. The rank of G(6p)
is computed as the number of nonzero eigenvalues, using the MATLAB default tolerance
set at tol = size(G)eps(||G||), where eps is the floating point precision of G. We obtain

rank(G(6p)) = 10. Because ¢ = 13, this means that the entire parameter vector cannot be

SConsidering 7, instead of r,_; in Y yields the same result. We only need to replace the lag operator
in the first row of A(L) by 1. Such a feature is true in general.

A simple two-point method is used. In our experience, using higher order methods did not change the
conclusions.
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identified from the spectrum. In addition, this suggests that three parameters have to be
fixed to achieve identification.

Since the model is not identified, we can follow the procedure outlined in Section 1.3.1
to pinpoint the sources of nonidentification. In Step 2, we apply Corollary 4 to all one-
element subsets of  which, as noted above in (1.12), simply amounts to checking whether
any diagonal elements of G(6p) are zero. None is found, hence we continue to Step 3 and
consider all two-element subvectors of 8. We find three subvectors that yield G*(6p) with
one zero eigenvalue: (v,¢) , (v,7?), and (¢, 72). This finding is very intuitive, since all of
these parameters enter the slope of the Phillips curve equation and thus are not separately
identifiable, as noted by An and Schorfheide (2007). We do not report the nonidentification
curves for these cases, as they are trivial and can be eliminated by reparameterizing the
model with & = 7(1 — v)/ (V%2¢) as a new parameter instead. However, highlighting them
does play a useful part in illustrating our procedure at work.

Before we continue, we exclude all three-parameter subvectors that contain either of the
three nonidentification sets identified above as proper subsets. Considering all remaining
three-element subvectors of € yields no new nonidentification sets. However, there is one

four-element subvector which has one zero eigenvalue:

(1/}1911)25 Pr’03)~

Interestingly, all of these parameters enter the Taylor rule equation in the model.

Having excluded all subvectors containing the nonidentification parameter sets above
and repeating Step 4 with more parameters, we do not find any more sources of nonidenti-
fication in this model. The result implies that to achieve identification, it is necessary and

sufficient to fix two parameters out of v,¢ and 72 , and one parameter out of 1, ¥z, pr
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and o2.

The above finding is further confirmed when we repeat the exercise by considering a
reparameterization of the model with x as defined above: § is still not identified, and G(6y)
has only one zero eigenvalue. Note that the reparameterization amounts to fixing two
parameters out of v,¢ and 72. This leaves only one direction of nonidentification, which
turns out to be, not surprisingly, along the (1, %2, pr, 02) subvector.

We then proceed to evaluate the nonidentification curve, consisting of combinations of
Y1, 2, pr, and o2, using the Euler method with step size A = 10~° in a small neighborhood
around 8y. The result is presented in Figure 1.1. The figure shows the nonidentification
curve pertaining to each parameter. The initial value is at 8y and the curve is extended in
each direction using (1.11). The directions are marked on the graph by bold and dotted
lines. Note that 12, which governs the output weight in the Taylor rule and must be
nonnegative, is decreasing along direction 1. Therefore, we truncate the curve at the closest
point to zero where v, is still positive. Along direction 2, we reach an indeterminacy region
before any natural bounds on parameter values are violated, and hence truncate the curve
at the last point that yields a determinate solution. Therefore, this case also provides an
illustration of how to narrow down the domain of the nonidentification curve in practice.

To give a quantitative idea of the parameter values on the curve, we also present a
sample of values from various points on the curve in Table 1.1. Specifically, ten points were
taken at regularly spaced intervals from 6; in the positive and negative direction.

Of course it is necessary to verify that the points on the curve result in identical spectral
densities. We do this by computing the fg(w) at half of the Fourier frequencies used in

the computation of G(fp) (i.e., 5,000 frequencies between 0 and 7)7 for each point on the

"There is no need to consider w € [—,0] because fo(w) is equal to the conjugate of fo(—w).
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curve and then compare it to the ones computed at 3. Due to numerical error involved
in solving the model, the computation of the G matrix, and the approximation method
for the differential equation, small discrepancies between the spectra computed at 6y and
the points on the curve should be expected. We therefore consider three different measures
of the discrepancies (let fani(w) denote the (h,!)-th element of the spectral density matrix

with parameter 6 and let 2 be the set that includes the 5,000 frequencies between 0 and

m):

Maximum absolute deviation: mg?(] | foni(wj) — Fooni(wy)],
w;

max,,;eq | fori(w;) — fogni(w;)|

Maximum absolute deviation in relative form

| fooni(w;) '
Maximum relative deviation: max | fon (w; ) = foon (wj ) .
w; €N | foort(ws)|

Note that when computing the second measure, the denominator is evaluated at the same
frequency that maximizes the numerator. To save space, we only report results for the
points in Table 1.1, as the rest are very similar. Both Tables 1.2 and 1.3 show that even
the largest observed deviations are quite modest (recall that the Euler method involves
a cumulative approximation error that is of the same order as the step size, in this case
10~5). This confirms that the spectral density is constant along the curve.

Note that all four parameters in (¢1, ¥z, pr, 03) have to change simultaneously to gen-
erate nonidentification. This can be further verified as follows. Suppose fixing o2 still
leaves (11,2, pr) unidentified. Then this subvector should generate a nonidentification
curve. However, using the procedure outlined above yields a curve, the points on which
produce much larger deviations from fy,(w) than those reported in Tables 2 and 3. Specif-
ically, maximum relative and absolute deviations in both directions are of order 10~ at

the very first point away from 6, which is already higher than the implied approximation
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error, then reach order 102 for most elements of the spectrum in under 4,000 steps away
from 6, and keep growing fast as the curve is extended further. We also experimented
with other three-parameter subsets of (11,12, pr,02) and reached similar findings. These

findings provide further support for our result.
Analysis based on the first and second order properties

We now extend the analysis to incorporate the steady state parameters. Consider the
measurement equations from An and Schorfheide (2007) that relate the output growth, the

inflation, and the interest rate observed quarterly to the steady states and the elements of

Sti
YGR, = 4@ +100(y; — yi—1 + 2),
INFL, = =4 4+ 400m,,
INT, = o4 47 4 44@ 4 400r,,
where

7@ =100(y - 1), 7 = 400(7 — 1), r4 = 400(% -1),

and 7 is a constant in the technological shock equation. The parameter vector becomes

a = (T ,B,V,¢,7r wl wz,pr,pg,pz,a g‘ o-z'fy(Q))

where v(@) is the only nondynamic parameter. Thus, we have

4@
1(8) = 400(% — 1)

400(7 — 1) + 400(5 — 1) + 4¢(@
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and the A(L) matrix in this case is

100 0 0 100-100L 0 O O O
0 0 O 0 400 0 0 O

0 0 400 0 0 000

Setting v(?) = 0.55 as in An and Schorfheide (2007), we consider identification at

o = (2,0.9975,0.1,53.6797,1.008, 1.5,0.125,0.75,0.95,0.9,0.4, 3.6, 0.9, 0.55).

Note that u(8) can be easily differentiated analytically in this case.

Applying Theorem 1.2, we find rank(G(6p)) = 12. Hence, 0, is not identifiable from the
first and second order properties of the observables either. After applying the procedure
from Section 1.3.1, we find two subvectors, (v,¢) and (1,2, pr, d2), which account for
nonidentification. Intuitively, we no longer detect (v,7) and (¢,7), as 7 enters u(8) and
hence is identifiable from the mean. Since the two nonidentification curves are exactly the
same as in the dynamic parameter case, they are not reported here.

Remark 1.5. This example shows that in this model the Taylor rule parameters are not
separately identifiable from the (first and) second order properties of observables at 8y. Such
a finding, first documented in this chapter, was also more recently documented in Komunjer
and Ng (2011). This constitutes a serious concern for estimation in this and similar DSGE
models.

Remark 1.6. The results also have direct implications for Bayesian inference. Suppose we
impose a tight prior on one of the four parameters, say ¥, while using flat priors on the rest.
Then, the posterior distributions of Vg, pr and o2 most often become concentrated due to
their relation with v,. Therefore, simply comparing the marginal priors and the posteriors
may give the false impression that the parameters are separately (or even strongly) identified
and may overstate the informativeness of the data about the parameters.
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A procedure to ensure robustness

In the above discussion we used a particular step size for numerical differentiation and
the default tolerance level for deciding the ranks of G(fp) and G(fp). We now examine
the sensitivity of the results to a range of numerical differentiation steps (from 1072 to
107%) and tolerance levels (from 1072 to 10710). The results are reported in Table 1.4.
We can see that the results are robust over a wide range of step sizes and tolerance levels.
Discrepancies start to occur when the step size is very small or very large, and when the
tolerance level is very stringent. This is quite intuitive, as when the step size is too large,
the numerical differentiation induces a substantial error, since the estimation error for the
two-point method is of the same order as the step size. When the step size is too small,
the numerical error from solving the model using GENSYS is large relative to the step
size; therefore, the rank will also be estimated imprecisely. Our choice of the step size of
1077 x @ can therefore be seen as balancing the trade-off between derivative precision and
robustness of the rank computations to tolerance levels as low as 10710,

Furthermore, the nonidentification curve can be embedded into a procedure to reduce

the reliance on the step size and tolerance level. Specifically, we can consider the following:

e Step 1. Compute the ranks of G(6y) and G(6p) using a wide range of step sizes and
tolerance levels (such as those in Table 1.4). Locate the outcomes with the smallest

rank.

e Step 2. Derive the nonidentification curves conditioning on the smallest rank re-

ported. Compute the discrepancies in spectral densities using values on the curve.

The purpose of Step 1 is to avoid falsely reporting identification when the parameters arc

unidentified, or, more generally, to overstating identification. However, it may incorrectly
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label identified parameters as unidentified, which is further addressed in Step 2. The idea
is, if this indeed occurred, then some curves reported in Step 2 will, in fact, correspond
to parameter subsets that are identifiable. Therefore, the discrepancy surfaces as we move
along such curves away from fy and 8p. Note that applying this procedure, with step sizes
and tolerance levels stated in Table 1.4, leads to the same results discussed in the two
previous subsections.

Remark 1.7. Based on the evidence reported here and our erperimentation with other
models, we suggest using 1077 x 8y and size(G)eps(||G||) as the default step size and tol-
erance level when implementing the methods, followed by the two-step procedure outlined
above to ensure robustness.

1.4 FDQML estimation

We first present a brief derivation of the FDQML estimators and then study their asymp-
totic properties in both well specified and misspecified models. The subsequent analysis

assumes that the system is nonsingular, i.e., ny < n..

1.4.1 The estimators

For the sole purpose of deriving the quasi-likelihood function, assume that the process {Y;}
is Gaussian. Let w; denote the Fourier frequencies, i.e., w; = 27j/T (j = 1,2,...,T = 1).

The discrete Fourier transforms are given by

1

T
wr ((.«JJ) = ———‘?\/—T—r—_fz}’texp ("'int) s ] = 1,2,...,T—' 1.

t=1
Note that replacing Y; by Y; — u(6) does not affect the value of wr (w;) at these frequen-
cies. wr (w;) have a complex valued multivariate normal distribution, and for large T are

approximately independent, each with the probability density function (see Hannan (1970,
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pp. 223-225))

Y detl(fo(wj)) exp [—tr { f ! (wj)wr (w;) wr (wj)}],5=1,2,...,T - L.

Therefore, an approximate log likelihood function of # based on observations Yi,...,Yr is

given, up to constant multiplication, by

i) [log det (fo(uwy)) + tr { £ i) (w)}] (1.14)

where It (w;) = wr (w;j) wy (w;) denotes the periodogram. Letting W (w;) be an indicator
function as defined in the previous section, we consider the generalized version of (1.14)
T-1
Ly (8) = =Y W(w;) [logdet (fo(w;)) + tr { f57 (wj)Ir (w;)}] (1.15)

Jj=1

Then the FDQML estimator for 6 is given by
0r = arg max Ly (9). (1.16)

Thus, the above procedure allows us to estimate the dynamic parameters based on the
second order properties of {Y;} without any reference to the steady state parameters. Com-
pared with the time domain QML, the estimate here can be obtained without demeaning
the data.

It is also simple to estimate both dynamic and steady state parameters jointly. Let

T
Wi (0) = == 3" i~ (@) and Iy (0) = wyr () wir (0

Noticing that wj (0) has a multivariate normal distribution with asymptotic variance

f6(0) and is asymptotically independent of wr (w;) for j = 1,2,...,T — 1, we arrive at the
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approximate log likelihood function of 4 :
Lz (8) = L (6) — [log det (fo(0)) + tr { £ (051 (0)}]
Then the FDQML estimator for 8 is given by

O = Lt (6). 1.17
T = argmax T (6) (1.17)

1.4.2 Asymptotic properties of the FDQML estimators

The asymptotic properties of the estimator (1.16), with W(w;) = 1 for all w;, have been
studied under various data generating processes in the statistics literature; see, for exam-
ple, Dunsmuir (1979) and Hosoya and Taniguchi (1982). The estimator (1.17) received
less attention. One exception is Hansen and Sargent (1993), who formally established that
T-1Lr (0—) converges to the same limit as the time domain Gaussian quasi-maximum like-
lihood function for @ uniformly in # € ©. Their result allows for non-Gaussianity and
model misspecification. This section can be viewed as a further development of their work
in the following sense. First, we formally establish the relationship between the identi-
fication condition and the asymptotic properties of the estimator. Second, we explicitly
derive the limiting distribution of the estimator, which is important for inference and model
comparison.

We gradually tighten the assumptions to obtain increasingly stronger results. To ana-
lyze the first issue, the following assumptions are imposed on the second and fourth order
properties of the observed process {Y;}.

Assumption 1.5. (i) {Y;} is generated by
Y, = u(fo) + Y;(80)

with Y2(0) satisfying (1.1). (ii) fo(w) is positive definite with eigenvalues bounded away
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from 0 and oo uniformly in w for all 6 € ©. The elements of dvec(fg(w))/0¢' are bounded
away from oo uniformly in w for all @ € ©. The elements of fo(w) belong to Lip(B) with
respect to w, the Lipschitz class of degree 3,5 > 1/2.

Assumption 1.6. ¢, is fourth-order stationary. Let Qp 1.4k (j1,J2,3) be the joint cumulant

Of €thy €(t4j1)1s E(t472)g 0N €(tyjq)k- Assume Y2 . |Qhigk (1,72, J3)| < oo for any
1< hl, g,k <n.

The first part of Assumption 1.5 states that the model is correctly specified. This is
be relaxed in Section 1.4.3. The second part strengthens the first condition in Assumption
1.3. It is satisfied by stationary finite order vector autoregressive moving average (VARMA)
processes with finite error covariance matrices, which are the forms that the solutions to
linearized DSGE models typically take. In Assumption 1.6, the summability of the fourth
cumulant is weaker than the independence assumption, a sufficient condition is provided
in Andrews (1991, Lemma 1).

We now define the concept of a locally unique maximizer.

Let L(y) be some generic criterion function. We say ¢y is a locally unique maximizer of
L(yp) if there exists an open neighborhood of g such that L (¢) < L (¢g) for all ¢ different
from g in this neighborhood.

Define the following quantities as the limits of =L (§) and T~ Lt (9) :

Lo (0) = =5 [ W(w) [logdet(fo(w)) + tr {15 () foo()}] o,

- s 1 _ o _ _
Lo(6) = Loo(8) = 5 (1(B0) — 1(B))" f5(0) ((Bo) — (8))
Lemma 1.1. Let Assumptions 1.1-1.8, 1.5 and 1.6 hold. Then
1. T YLy (8) =P Lo (8) uniformly over 6 € ©.

2. 8o is a locally unique mazimizer of Lo (8) if and only if it is locally identified. Fur-
thermore, if 8y is globally identified,® then it is the unique marimizer of Lo (9).

8 The parameter vector 0 is said to be globally identifiable from the second order properties of {V;} ata
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8. @r —P 0, if one of the following two conditions is satisfied: i) Oy is globally identified,
or i) Oy is locally identified and the mazimization is carried over the corresponding
small neighborhood of identification, say §(8p), instead of ©.

4. Let Assumptions 1.1-1.6 holf. Then Properties 1-3 hold when 6, 6o, 07, Lt (6), and
Lo (8) are replaced by 6,09,6r, Lt (6), and Lo (9) , respectively.

The first result is essentially due to Lemma A.3.3(1) in Hosoya and Taniguchi (1982).
Their result is pointwise in 8 and is established with W(w) = 1. Our result strengthens
theirs to uniform convergence, which is important for showing Property 3. The second result
formally establishes the close link between the identification conditions and the asymptotic
properties of the FDQML estimator. The result is quite intuitive ex post, however, it
is worth documenting given that the identification property is derived without explicitly
referring to the likelihood function. The first two results lead directly to Property 3 by a
uniform weak law of large numbers. Property 4 holds based on the same arguments.

To derive the limiting distribution of the estimators, the assumptions on {¢;} need to
be further strengthened.

Assumption 1.7. (i) {e} is a vector of martingale difference sequences with respect
to the o—field generated by €5 : s < t. E(€q€|Ft—-7) = Zab, El€tavic)Fi-r) = Eabes
Elera€perceta| Fi—r) = Cabed a-8. with Tag > 0 and (aadqa > 0 for all 1 < a,b,c,d < ne. (1)
Letc(t,r) = e}, —E(es€,,,). Assumelimr oo T} ZTL=0 Zthl E [cap(t, 7)1 {cap(t,7)% > €T}]
< € holds for anye >0, L <00, and all1 < a,b < n..

Part (i) of Assumption 1.7 imposes restrictions on the conditional moments up to the
fourth order, and X, > 0 and (yqq4 > 0 are the usual positive variance conditions. It is
essentially the same as Assumption C2.3 in Dunsmuir (1979). This part can be further

relaxed to allow some conditional heteroskedasticity at the cost of some technical and

notational complications; see Theorem 3.1 in Hosoya and Taniguchi (1982). Part (ii) is a

point Qo if for any 61 € Bg, fo,(w) = fo,(w) for all w € [—n, 7] implies 6o = 6,.
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Lindeberg-type condition. It ensures that the sample autocovariances 7~1/2 Z "c(t,r)
(r =0,1,..., L) satisfy a central limit theorem for any finite fixed L. It can be replaced by
other sufficient conditions that serve the same purpose. The next result states the limiting
distributions of 61 and 57.

Theorem 1.3. Suppose 0y and 8y are globally identified or the mazimizations (1.16) and
(1.17) are over convex compact sets in which they are locally identified and are interior
points.

1. Let Assumptions 1.1-1.8 and 1.5-1.7 hold. Then,
VT (1 — 60) =2 N(O,M~'V M),

where M and V' are ¢ X q matrices, with the (j,1)-th element given by
0S4, 1(W) 85, (w)
M;, /W )tr {foo w)——— 0° foo(W)f;—al duw,

. f (w)
Vii = 47fMjl+ZZfb,c,d=1ﬂabcd{ / W (w)H*(w 90 H(w)dw

1
[ /W w) H* (w) 2= f"°” (w)dw] ,
cd

where [.],, denotes the (a,b)-th element of the matrix, Kepeq s the fourth cross-
cumulant of eta, €1ty €tc, and egay H(w) = H(exp(=iw);00) = X320 hs (fo) exp(—iws)
(see (1.8)), and H*(w) is its conjugate transpose.

ab

2. Let Assumptions 1.1-1.7 hold. Then \/T(gr — 0p) - N(0O,M~'WM™), where M
and V are (q+p) x (g+p) matrices, with the (j,1)-th element given by

_ 7 af! aft , _
o= [ W(w)tr{foo(w)ff;T;“’)foo(w)———-—f‘j;éf“’)}dw+z‘9“("°’ fal 0222

1
Vi = 47erl+Z:,(b,c.d=1'iabcd[ /W( JH* (w) fooJ( )H( )dw }
ab

X l%/W(w)H‘( foo( )H( )dw:l + Aji + Ay

cd
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af, ‘(u)

with Ay = 2¥m., eabc{ff,,vv(w[ () Ly ) H(“’)Lb"“}x

[@(%Qxfa)l (O)H(O)]C and {abc = E(ftaftbftc).

When W(w) = 1, the first result reduces to Corollary 2.2 in Dunsmuir (1979. p. 497)
and Proposition 3.1 in Hosoya and Taniguchi (1982), which were obtained in the context of
parameter estimation in stationary vector time series models. The generalization to a more
general W (w) is new. The limiting distribution depends on the fourth order properties of
the process. For DSGE models, this is because the same set of parameters affects both the
conditional mean and the conditional covariance of the process Y,¢ in (1.1). Technically, the
term ho(@) is in general not an identity matrix, but rather depends on unknown parameters.
This causes the second term in Vj; to be in general nonzero. However, in the important
special case where ¢; are Gaussian with diagonal covariance matrix, Kqp.¢q = 0 and the
limiting distribution depends only on the second order property of the process. This holds

for different specifications of W(w). Specifically, we have M~1VM~! = 4xM~! with

~1
(M), = / W(w)tr [foo«u) f"°( “) (i) L0 (W)] w

a6,

or, in matrix notation,

-1

M-—IVM—I = /W avec(ff)o(w) ), (fo—(-’l(w)l ® fg_ol(w)) dvec (3‘220(w))d‘d

(1.18)

The second result in the theorem is new in the literature even for the case with W(w) =

1. The inclusion of the steady state parameter makes the limiting distribution dependent
on the third order properties of Y;, namely £;,.. Again, in the important special case with
Gaussianity and a diagonal covariance matrix, £, = 0 and only the second order property

matters.



41

To construct the confidence interval, fg,(w), H(w) and H*(w) (w € [-m, 7)) can be
consistently estimated by replacing 6 and 6y with 61 and ET and applying (1.2) and (1.4).
The derivatives and the integrals can be evaluated numerically. The cumulants &5, and

Kabed can be replaced by their sample counterparts.
1.4.3 Misspecified models

We consider the interpretation of the parameter estimates when the DSGE models are
viewed as approximations. The next assumption allows the true data generating process
to be different from that implied by the DSGE solution.

Assumption MI. The observations {Yt}{:] follow a covariance stationary process given
byYi— o = Z;io hojet—;, whose mean ug and spectral density fo(w) are possibly different
from p(6) and fo,(w). Also, Y; satisfies Assumptions 1.5(i1) with fo(w) replaced by fo(w)
and Assumptions 1.6 and 1.7 with €; replaced by ¢;.

Suppose the estimates 61 and O are constructed in the same way as before and define

the pseudo-true values

[e, ]

mo__ m om __ rm
T —argr&agLoo(Q) and 6] —argrgleaéxL (6),

where

L3 (9)

~or [ W) logdet(fo(w)) + tr {13 fo(w)}] do
I5@) = L26) - 5 (o~ @) f7(0) (o~ u(d).

Suppose §7* and 87" lie in the interior of © and 6.

Corollary 1.7. Suppose 87 and A are globally identified or the mazimizations (1.16) and
(1.17) are over convez compact sets in which they are locally identified and are interior
points. Let Assumption MI hold.
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1. Assume the DSGE solution Y () satisfies Assumptions 1.1-1.8 and 1.5(ii). Then
VT(br — 67) —¢ N(0,Q°'TIQY)
with
r 82 ? i
Q - / W) | 5o 08 detlUop ) + gt { it )o@} s

! O fgm
M = d4n / W(w)t"{fo(w) Hog ) ) fi,;gf“”}dw

Ho(w)dw]
ab

. 1 i)
+ 3 Shdet Rabed [-2—,; [ W@ =%

T B fom (w)
x [é}; / W(w)HJ(w)-——%’E——-—HO(w)dw} ,

cd

where  Kgpea 8 the fourth cross-cumulant of e, &, Etc, and £,
andHo(w) = 3224 hoj exp(—iwj).

2. Assume the DSGE solution is given by 1(8)+Y(6) and satisfies Assumptions 1.1-1.4
and 1.5(ii). Then, VT (0 — ) =2 N(0,Q-1IQ~1) with

2
i / W [af;,logdet(foo @)+ atr () ol } ]
_ A f ot (w) Of gt (w
fiy = 4n / W(w)tr{fo(w) f;gf“’ folw) "5@( ) }dw
o auw'")' f()"}(o)aﬂ(ao)

3 for (w)
+Z:fb,c,d=1"abcd [%/W(W)HS(W) géjw Ho(w)dw]

ab

1
[ / W () He () ()Ho(w)dw] +Au+ Ay

cd
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i} 8f g (w)
with Ay = 2y :,Eb,c,d=1§abc {f—-;r W(w) [H6 w) ?991' HO(W)] ab dw} g
[au‘“‘““g;',") I (O)Ho(O)L and Eape = E(raCipetc)-

Misspecification in general affects both the mean and the variance of the estimate. Note
that when only estimating the dynamic parameters, misspecifying () has no effect on the

estimate 0}.

1.5 Quasi-Bayesian inference

This section extends the above framework to incorporate prior distributions on the DSGE
parameters. It also discusses a computationally attractive procedure to obtain parameter
estimates. The analysis is motivated by Chernozhukov and Hong (2003). We focus on 6y
because the procedure is identical for 8.

Consider the function

n(8) exp (Lt (9))
Jo 7(@)exp (Lr (6)) db’

pr(0) = (1.19)

where Lt (6) is the same as in (1.15) and m(6) can be a proper prior probability density or,
more generally, a weight function that is strictly positive and continuous over 6. Because
exp (Lt (6)) is a more general criterion function than the likelihood, p,.(8) is in general not
a true posterior in the Bayesian sense. However, it is a proper distribution density over the
parameters of interest, and is termed quasi-posterior in Chernozhukov and Hong (2003).

The estimate for 8y can be taken to be the quasi-posterior mean
bp = / 0p,.(0)d0.
)

To compute the estimator, we can use Markov chain Monte Carlo (MCMC) methods, such
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as the Metropolis—Hastings algorithm, to draw a Markov chain
5= (60,60,...6)

whose marginal density is approximately given by p..(8), and ér can be computed as

1 B
B E : ¢}
o1 szlg .

Meanwhile, for a given continuously differentiable function g: © — R, for example, an

impulse response at a given horizon, its estimate can be obtained via
1 B
5} = __E : )]

Here we omit the details on the construction of the Markov chains, since they follow
standard procedures. One may refer to Chernozhukov and Hong (2003, Section 5) or An
and Schorfheide (2007) for more details.

The next result provides an asymptotic justification for the estimator under correct

model specification.
Theorem 1.4. Suppose 8y (8y) is globally identified or () (w(8)) is strictly positive only
over a compact convex neiglzborhood of 8y (8o) in which they are locally identified and are
interior points. Then O (1) has the same limiting distribution as in Theorem 3 under
the corresponding assumptions stated there.

Consider the construction of confidence intervals for the elements of 8y or, more gener-
ally, of g(6p). In the important special case of Gaussianity with £(#) being diagonal, the
confidence intervals can be obtained directly from the the quantiles of the MCMC sequence
(0,6, ...,6(®)). Such intervals are asymptotically valid because Kapeq = O and therefore

M = V. The same result holds for fy because &, = 0, thus M = V. In the general case,

because exp (Lt (8)) is a more general criterion function, implying M # V, such an interval
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is not necessarily asymptotically valid, as clearly demonstrated in Chernozhukov and Hong
(2003). However, valid large sample inference can still be easily carried out using the Delta
method, as suggested in Chernozhukov and Hong (2003, Theorem 4). Specifically, let M
be T times the variance-covariance matrix of the MCMC sequence (81,6 ..,6(B)) . Let
V be an estimator for V, which can be obtained using the formula in Theorem 1.3 by
replacing H(w), Kabed, and 8f; ' (w)/80; (j = 1,2,...,q) with their consistent estimates.

Then a valid (1 — o) percent confidence interval for g(6g) is given by

[cg,7(a/2), cqr(1 — a/2)],

where

dg(br)

Cg,T(a) = g(éT) + an‘l/ZJ__é_o_’__M_l‘*/M_lag(eT)

06
with g, being the a-quantile of the standard normal distribution. Analogous argument
can be applied to construct confidence intervals for g(fp). The asymptotic validity of such
intervals can be verified using the same argument as in Chernozhukov and Hong (2003,
Theorem 4). Therefore, the details are omitted here.

Under misspecification, a result analogous to Theorem 1.4 can be obtained, with the true
value replaced by the pseudo-true values and the covariance matrix modified accordingly.

The key computational difference between the above method and the time domain
quasi-Bayesian inference is in computing the Kalman filter versus the spectral density
at the different parameter values. Therefore, the computation costs are similar. The
spectral domain approach has some additional advantages. First, one can exclude some
frequencies by specifying an appropriate W{w), which is not easy to achieve in the time
domain. Second, if the sole interest is in estimating the dynamic parameters, it is not

necessary to specify u(@) or to demean the data. Third, although not pursued in this
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chapter, the spectral domain approach can be extended to handle models without requiring
log linearizations. The idea is that as long as the spectral density can be computed,
analytically or by simulation, a criterion function similar to (1.14) can be constructed to
obtain parameter estimates. Such an idea has been mentioned elsewhere, for example,
in Diebold, Ohanian and Berkowitz (1998), but has not been formally studied. Finally,
it provides a platform for conducting hypothesis testing and model diagnosis from the
spectral domain, as emphasized by Watson (1993). For example, one can readily obtain
estimates and confidence interval for components of the spectral density matrix and contrast
them with the observed data. Also, it is simple to construct tests for restrictions imposed
on a given frequency component, such as the zero frequency. We plan to explore such

developments in future work.

1.6 Conclusion

We have provided a unified treatment of issues related to identification, inference, and
computation in linearized DSGE models in the frequency domain. In addition to presenting
a necessary and sufficient condition for local identification of the structural parameters, we
also proposed a method to trace out nonidentification curves when lack of identification is
detected. The application of our condition is straightforward because it mainly involves
computing the first order derivatives of the spectral density. The MATLAB code and
the results for a more complex medium size DSGE model are available on our webpage.
For estimation, we considered a frequency domain quasi-maximum likelihood (FDQML)
estimator and showed that it permits incorporation of relevant prior distributions and is
computationally attractive.

The current work can be further developed in several directions. First, we have assumed
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determinacy, but we conjecture that our identification condition can be applied to any
selected equilibrium path under indeterminacy, provided that the state vector and the
parameter space are augmented accordingly. Second, although we have worked with log
linearized systems, we conjecture the condition can be applied to DSGE models solved with
higher order approximations, provided the resulting spectral density and its derivatives can
be computed precisely. Although the chapter does not consider weak identification, it can
be shown that the frequency domain perspective affords a simple and transparent inferential
procedure robust to weak identification (see Qu (2011)). We are currently pursuing such

research directions and hope to report results in the near future.

1.7 Mathematical appendix 1

The spectral density matrix fg(w) is a Hermitian matrix satisfying fo(w)* = fo(w). It is
in general not symmetric. The following correspondence is useful for understanding and

proving the identification results:

£o(0) > folw)®  with fo(w)® = Re(fo(w)) Im(fo(w)) , (1.20)

—Im(fe(w)) Re(fo(w))

where Re() and Im() denote the real and the imaginary parts of a complex matrix, i.e., if
C = A+ Bi, then Re(C) = A and Im(C) = B. Because fy(w) is Hermitian, fg(w)® is real

and symmetric (see Lemma 3.7.1(v) in Brillinger (2001)). To simplify notation, let

R(w; 8) = vec(fo(w)"®).

The following lemma is crucial for proving the subsequent results.
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Lemma 1.2. We have the identity

(3veC(fo(w)'))' (BveC(fa(w))) _1 (6R<w; 6'))’ (Mw;")) , (1.21)

a0 o6’ 2 o’ oy

Proof of Lemma 1.2. The (j, k)-th element of the term on the left hand side is equal to

(6v66(fo (w)) ) ' (31166(fo(w)) )

£ 305

_ Ofg(w) Ofg(w) ) _ 0 fo(w) 0 fe(w)

= “{ 6, 06, }'“{Re( 80, 06y )}

1, [ (0few) 8fsw)\FL _ 1, [8(fe(w)®)B(fa(w)F)
= 5“{( 20, o6, ) }'5”{ 26, 06y }
_ 1 dvec (fo(w)R) ' dvec ( fo(w)®)

-2 09, 90y, :

where the first equality is because of the identity vec(A’)vec(B) =tr(AB) for generic
matrices A and B, the second is because fg(w) is Hermitian, thus this term is real valued,
the third equality is because of the definition (1.20), the fourth is because, for generic
complex matrices, if Z = XY, then Z® = XBYR (see Lemma 3.7.1(ii) in Brillinger (2001)),
and the fifth is because fg(w)? is real and symmetric. The last term in the display is simply
the (j, k)-th element of the right hand side term in (1.21). This completes the proof. M

Proof of Theorem 1.1. Lemma 1.2 implies that G(6) defined by (1.9) is real, symmetric,

positive semidefinite, and equal to

kit

%/(aRg;;leo))'(aRg;;/eo))dw.

-7

This allows us to adopt the arguments in Theorem 1 in Rothenberg (1971) to prove the
result.

Suppose 8y is not locally identified. Then there exists an infinite sequence of vectors
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{6x}%>, approaching 6 such that, for each k,
R(w; 6p) = R(w;0) for all w € [—m, 7] .

For an arbitrary w € [—m, 7], by the mean value theorem and the differentiability of fa(w)

in 8,
OR;(w; 64, w))

0= R;(w;0k) — Rj(w; o) = 30"

(6x — 60),

where the subscript j denotes the j-th element of the vector and 5(j, w) lies between 6

and 8, and in general depends on both w and j. Let

6 — 6o
dp = k=00
*~ 6% — ol

then
OR.(w; 6(7,
—’(ﬁa—a—,(li)—)dk = 0 for every k.
The sequence {d;} is an infinite sequence on the unit sphere and therefore there exists a

limit point d (note that d does not depend on j or w). As 8; — 6y, dy approaches d and

we have

. BRJ(UJ,é(],LU))
dm, a0'

OR;(w; 8
= P W,

where the convergence result holds because fg(w) is continuously differentiable in 8 (As-
sumption 1.3). Because this holds for an arbitrary j, it holds for the full vector R(w;6fp).

Therefore,

IR(w; 6)

oo 4=0

which implies

p (aRg;;l oo))’ (BRE;Z;, 90)) d=0.
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Because the above result holds for an arbitrary w € [—m, 7], it also holds when integrating

over [—m,r]. Thus

n
aR(W' 00) ! BR(w 00)
/ 3 ’ _
d{/( o))’ (ORstn)) 4, Ly
Applying Lemma 1.2, because d # 0, G(6p) is singular.

To show the converse, suppose that G(6) has constant rank p < ¢ in a neighborhood
of 6y denoted by 8(fp). Then consider the characteristic vector c¢(#) associated with one of
the zero roots of G(#). Because

/" (ané;; e))’ <6Rg;,; 0)) o) =0,

-

/ (BRES:, ) (9)> (8Ré(;;, ) (9))

-7

we have

Since the integrand is continuous in w and always nonnegative, we must have

(8Rg;, ;0) (0)> (BRg;Jl ;0) (0)>

for all w € [—m, 7] and all § € §(6p). Furthermore, this implies

OR(w; 8)

—g—c(6) =0 (1.22)

for all w € [, 7] and all 8 € 6(6y). Because G(0) is continuous and has constant rank in
8(6o), the vector ¢(@) is continuous in §(fp). Consider the curve x defined by the function

8(v) which solves, for 0< v < 7, the differential equation

(v)
ov (),

8(0) = 6.
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Then

dR(w;0(v))  OR(w;6(v)) 06(v) _ OR(w;8(v))

v~ o8y  ov ~  aew)y =0

for all w € [—m, 7] and 0 < v < ¥, where the last equality uses (1.22). Thus, R(w;8) is
constant on the curve x. This implies that fyp(w) is constant on the same curve and that
0o is unidentifiable. This completes the proof. B

Proof of Corollary 1.1. The statement in the subsequent proof applies to all w € [—n, 7.

Using the same argument as in the proof of Lemma 1.2, I(6p) can be rewritten as

"

10 = 3= [ (2552 (@™ @ ()] ) g Baa .29)

Because spectral density matrices are Hermitian and positive semidefinite, fg,(w)? is real,
symmetric, and positive semidefinite (see Lemma 3.7.1 (vii) in Brillinger (2001)). Fur-
thermore, because here fp,(w) has full rank, fg,(w)® is in fact positive definite. Thus,
([ fgo(w)R] 1w [fgo(w)R] ‘1) is positive definite (see Theorem 1 in Magnus and Neudecker
(1999, p. 28)).

We now prove G(6p) and I(6p) have the same null space. Since they are both ¢ x ¢

matrices, the result then implies they have the same rank. First, suppose ¢ € R? and

I(8p)c = 0. Then dI(fp)c = 0 or, explicitly,

w

/ (95_(8%_"1’2) (Voo @)®) " ® [foo@)®] ") (@%5"’—)) duw = 0.

-

Because the integrand is continuous in w and always nonnegative, we must have

(B ) ([ @ L)) (2)) <o
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Because ([ Joo(w)®] e [foo (w)®] -l) is positive definite, this implies

OR(w;60)
——'501_C = 0.

Therefore,

(aRg;;, 00))' (33(5‘;;, 00)c> =0

and, consequently, G(6p)c = 0. Next suppose ¢ € R? and G(0p)c = 0. Applying the same

argument that leads to (1.22), we have

(angg eo)c) e

Then, trivially,
(?—5(5“;3—092) ([ @ (o) ™) (2}%@) -

Upon integration, we have I{6p)c=0. B

Proof of Theorem 1.2. Using Lemma 1.2 again, G(#) can be equivalently represented as

w -

w0-3 | (57) (M)« (%) %

with both terms on the right hand side being real, symmetric, and positive semidefinite.

Let
R{w;0
R(w;6) = wif) ,
Zzu(0)
then

o= j (aﬁg‘(‘;’,; 5’)' (3R(§‘3’,; 5)) .

Using this representation, the proof proceeds in the same way as in Theorem 1.1, with 6
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replaced by 8 and R(w;8) replaced by R(w;#). The detail is omitted. W
Proof of Corollary 1.3. We only prove the first result, as the second can be proven
analogously using the formulation in the proof of Theorem 1.2.

Suppose the subvector 63 is not locally identified. Write 8 = (#*,6™)’. There exists an

infinite sequence of vectors {0k}, approaching g such that
R(w; 6p) = R(w; ) for all w € [—m, 7] and each k.

By the definition of partial identification, {6} } can be chosen so that ||0f — 63| / ||0x — 6ol >
€, with € being some arbitrarily small positive number. The values of 6, can either change or
stay fixed in this sequence; no restriction is imposed on them besides those in the preceding

display. As in the proof of Theorem 1.1, in the limit, we have

OR(w; 6p)

oo =0

with d® # 0 (where d® comprises the elements in d that correspond to 8*). Therefore, on

one hand,

G(6o)d = 0;
on the other hand, because d* # 0 and by definition 905/06¢' = [I4im(g+), Odim(er))» We have

63

gl =d" #0,

which implies

G®(8o)d # 0.

Thus, we have identified a vector that falls into the orthogonal column space of G(6g) but

not of G%(6p). Because the former orthogonal space always includes the latter as a subspace,
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this result implies G*() has a higher column rank than G(6p).
To show the converse, suppose that G(#) and G*(8) have constant ranks in a neighbor-

hood of 8y denoted by 6§(6p). Because the rank of G() is lower than that of G*(8), there

exists a vector c¢(#) such that

G(8)c(6) = 0 but G*(8)c(8) # 0,

which implies for all w € [—n, 7] and all 8 € §(6p) (see arguments leading to (1.22)),

OR(w; 8) _
but
OR(w;6)/06 0
W% ) = £0,
864 /06’ c*(8)

where ¢?(6) denotes the elements in ¢(#) that correspond to 6°. Because G(#) is continuous
and has constant rank in §(6g), the vector ¢(8) is continuous in §(6p). As in Theorem 1.1,
consider the curve x defined by the function 6(v) which solves, for 0< v < ¥, the differential

equation
00 (v)
ov

= C(B), 0(0) = 90.
On one hand, because c*(#) # 0 and ¢*(8) is continuous in 8, points on this curve correspond

to different #°. On the other hand,

OR(w;60(v)) OR(w;0(v)) 06(v)  OR(w;8(v))
v T B0(v) v~ 08(v)

c(@) =0

for all w € [, 7] and 0 < v < ¥, implying fg(w) is constant on the same curve. Therefore,
0§ is not locally identifiable. B

Proof of Corollary 1.3. The proof is essentially the same as in Rothenberg (1971,
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Theorem 2) and is included for the sake of completeness. Suppose ¥(6) has rank s for all
# in a neighborhood of 6y. Then, by the implicit function theorem, there exists a partition

of 6 into 8! € R* and 62 € R9° such that
8! = q(6%)

for all solutions of 1() = 0 in a neighborhood of 8y with §2 being an interior point of that

neighborhood. Consequently, the spectral density can be rewritten as

Jo (W) = fye2),02 (W),
which involves only ¢ — s parameters. Let

8q(6?) (62)

e = 20D wma ¢ =] gy 1]00)

Then, by Theorem 1.1, 6y is identified if and only if G (o) has full rank.

Suppose there exists a vector d € R?79 such that
G (8o)d = 0. (1.24)
Then the structure of G (8) (see Lemma 1.2) implies that (1.24) holds if and only if

2
G (60) %) 4o,

Let
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Then we have: (1) ¢ # 0 if and only if d # 0, and (2)

G(6o)

c=

¥(6o)

if and only if (1.24) holds, where ¥(6p)c = 0 always holds because 6, satisfies the constraint
¥(8) = 0. Thus, the preceding matrix has full rank if and only if 6 is identified under the
constraints. This completes the proof. B
Proof of Corollary 1.6. Without loss of generality, assume ny = 1. Otherwise, the proof
can be carried out by analyzing R(w;0). The map 8 — fp is infinite dimensional. The
proof therefore involves two steps. The first is to reduce it to a finite dimensional problem.
The second is to apply a constant rank theorem (a generalization of the implicit function
theorem).

Consider a positive integer N and a partition of the interval [-m, 7] by w; = (2mj/2V) -

7, with j =0,1,...,2N. Then, the map

0+ (fo (wo) » --s fo (won)). (1.25)

is finite dimensional. To simplify notation, let fo y = (fo (wo),-.., fo (won))’. Convention-
ally, the rank of the above map is defined as the rank of the Jacobian matrix dfg n/06',
which is of dimension (2" + 1) x ¢ with rank no greater than g — 1 at 6, because if the rank
equals g, then 6y becomes locally identified, contradicting the assumption in the corollary.
Note that, for a given N, its rank can be strictly less than g — 1.

We now show that there exists a finite NV such that dfg v /38 has rank q — 1 at 6.

Suppose such an N does not exist. Then the rank of 3fy y /06’ is at most ¢—2 for arbitrarily
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large N. This implies that the rank of

G (00) = o 2;: (Mé’gfj))’ (*52)

7

is at most g — 2 for arbitrarily large N, because vectors orthogonal to dfg /88’ are also
orthogonal to Gn(#) by construction. Let Ax; (j = 1,...,q) be the eigenvalues of Gn(6y)

sorted in an increasing order. Then, for any finite N,

AN = AN2 =0.

On the other hand, because G (6y) — G(6p), so do its eigenvalues. Thus, for any ¢ > 0,
there exists a finite N such that |A2 — An 2| < &, where A; is the second smallest eigenvalue

of G(6p). Choosing £ = A2/2 leads to

l’\N,2| > A2/2.

Since rank(G(fp)) = ¢ — 1 by Assumption, A; is strictly positive. Thus, we reach a con-
tradiction. Because the convergence of Gn(8) — G(6) is uniform in an open neighborhood
of fy, say 8(6p), the above analysis also implies there exists an N such that dfy y/00’ has
constant rank ¢ — 1 in that neighborhood.

Use such an N and consider again the map § — fp v, which is finite dimensional, is

continuously differentiable, and has constant rank ¢ — 1 in §(6p). Define the level set

{6 € 8(60) : fon = faoN}-

Then the rank theorem (Krantz and Parks (2002, Theorem 3.5.1 and the discussion on
p. 56)) implies that the level set constitutes a smooth, parameterized one dimensional

manifold. Thus, there exists a unique level curve passing through 6y satisfying fo v = fo, N-
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Therefore, we have established the result for a particular finite N. Further increasing
N leads to finer partitions of [~m, 7). This cannot decrease the rank of the map (1.25),
and therefore cannot increase the number of level curves passing through 6. Thus, in the
limit, there is at most one level curve passing through fy. The existence of such a curve
for the infinite dimensional case has already been shown in the main text, given by (1.10).
This completes the proof. B
Proof of Lemma 1.1. Applying Lemma A.3.3 (1) in Hosoya and Taniguchi (1982), for a
given 8 € ©, we have
1 721 1 !
plzmT_,ooT Z tr {W(w;)fy Ywij)Ir (wj)} = — [ tr {W(w)f; () fao (w)} duw.
n
To prove stochastic equicontinuity, consider for any 6,62 €6,
1 I
T {Ww) (£ - £32 @) Ir @) } -
j=

Apply a first order Taylor expansion

=~

el
1M

—

tr {W(wj) (fa_ll(wj) - fG_zl(wj)) Ir (wj)}

1 20 o {W ) o) )}
= 5"- o0’ l - 02)
j=1
T-1 s
= —% W(wJ)vec(IT w,)) {f l(w]) ®f j)}_a_'fﬁg_'zg,(w_ﬂ)(gl — 8,)1.26)

1

j
where 8 lies between 6; and 63. The norm of (1.26) is bounded by

1 Fiid, dvec (fz(w;))

S Hws) ® £ wi)) 20 161 — 62 .

J=1
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The quantity

55 ) ® 5 a2 Yalen))

is uniformly bounded by Assumption 1.5(ii). The term 7! Z}‘__.'ll ”vec(IT (w;)")|| only
depends on 8 and is O, (1) because the diagonal elements of 7! Z;r:—]l It (w;) are positive
and satisfy a law of large numbers (Hosoya and Taniguchi (1982, Lemma A.3.3 (1))), and
the norm of the off-diagonal elements can be bounded by the diagonal elements using the
Cauchy—-Schwarz inequality. Therefore, the term (1.26) can be made uniformly small by

choosing a small ||#; — 62]]. Meanwhile,

T-1 Eg
1 1
T ng W (w;) log det fo(w;) — oy / W(w) log det fg(w)dw

uniformly in @ €©. Thus, the first result holds.
For the second result, we first show that 8y maximizes Lo, (6). Apply the same argu-

ment as in Hosoya and Taniguchi (1982, p. 149). For every w € [—m, 7],

W (w) [log det fo(w) + tr { f5 ' (w) foo (w)}]

If

W (w) log det foq(w) + W (w) [tr { f57(w)fa, (w)} — logdet { f;} (w) fo, (w) }]
W(w) log det fg,(w) + W(w) !i Aj(w) —log Aj(w) — 1| + W(w)ny,
i=1

it

where A;(w) is the j-th eigenvalue of f; Y(w) fo,(w). Because Aj(w) —log Aj(w) —1 >0 and

the equality holds if and only if Aj(w) =1, j = 1, ..., ny, this implies
1 ki 4
L, (8) < ~on /W(w) (logdet fg,(w) + ny) dw,

which holds with equality if and only if A\j(w) = 1 for all w € [~m,n] (F=1,..,ny).

However, Aj(w) =1 (j =1,..,ny) implies fg,(w) = fo(w) because the latter are positive
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definite Hermitian matrices. Hence, 8 is a global maximizer.

The above result implies that any other parameter vector, say #;, is a maximizer if
and only if fp, (w) = fg,(w) for all w € [-7,n]. Now suppose the parameters are locally
identified. Then there are no parameter values close to 6y satisfying this equality. Thus,
0o is the locally unique maximizer. To see the converse, suppose fp is the locally unique
maximizer. Then there cannot be any parameter close to 0y satisfying fp,(w) = fo(w) for
all w. Thus, by definition, we have local identification. The argument to establish the result
for the global identification proceeds in the same way.

The third result follows directly from the uniform weak law of large numbers. B
Proof of Theorem 1.3. We only prove the second result, which includes the first as a

special case. The first order condition (FOC) gives

T-1 ovec | fz (wj) ’
27|'T_1/2 Z W(wj) ( aog U ) {fb::(wj)l %) fb;;‘l (Wj)} vec(IT (w]') — f'éT(wJ'))
=0
T -
~1/ ou(dr) ,_ a3
+2r"! 2;——-——65 130 (Ye=p(6r) = 0.

Note that the first summation starts at j = 0 and Iz (0) = 151 - (0). The above FOC
implies
T-1
_ dvec(foo(wj)) ( .- _
DD Wy 22D ) (1o g1 0n)) vee (17 () — £, )

_172 - Om(B) s
+2T712 Y == 3 (0)(Ye—p(Br)) = op(1),
t=1

which holds because gr —P o, foo(w;) and u(Bp) are continuously differentiable, and

foo l(w]-) have bounded eigenvalues. Apply a first order Taylor expansion around 8. Then
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the left hand side of the preceding display is equal to

onT1/2 Z w( J)avec(fao(“"]) ) (fg-ol(wj)l® fo—ol(wj)) (1.27)
=0
xvec (It (wj) — foo(w;)) (I) (1.28)
+2T“1/ZZ a"é()g") foi! (0) (Ye—1(6o)) (1)
t==1
T-1 RYAY; w
_27rT—1 ZW(UJJ)aveC(fao;—(w])) (feol(w]) ®f90 ( )) aveC(éf;(I)( ]))
Jj=0
xTV2(§ — G¢) (III) (1.29)
o218 A( B ~
"( ") fi0) ’;(5,0)1*‘/2 (8 - o) (V)
+0,(1).

First consider term (III). The quantity in front of T'/2 (5 — 6p) converges to

/ W) VBT (o y @ gt ) ZeUnld)y,,

whose (h, k)-th element is given by

Ui

/tr{W(w)feo( ) f"°( foo(w) f"°( )}dw.

-7

Therefore, the above expansion implies (see Theorem 1.3 for the definition of M)
TY2(§ — Go) = M~ x (I) + M~ x (II) + 0,(1).

Term (I) satisfies a central limit theorem (CLT), whose covariance matrix has the (h, k)-th
element given by (see Theorem 3.1 and Proposition 3.1 in Hosoya and Taniguchi (1982);

in particular, their formula for Uj;)

47r/W(w)tr{fgo(w) f"°( )f (w )af"°( )}dw
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+Z;‘:b,c,d=mm[ / w2y (w)dw} x

ab
1
[ / W () B () Lo )H(w)dw]

cd

Term (II) also satisfies a CLT, with covariance matrix given by

6'u(ﬁ’o) A (Bo) '

e (DR

To complete the proof, we only need to verify the covariance matrix between (I) and (II).
Let

A =Cov((I),(IT))

and consider its (h, k)-th element

Je ST W) 2 (17 (o) - foo(w)))

(Fr 28 310 STy (¥ — o))

tr (
Apr = 4nCov

Define
¢ (wj) = af—":;;ii’) and 4*(0) = ‘9“(90) ulu)’ -1(g),
Then
App =
— 4nCov <( tr (F Simo W(ws)(wy) Ur (w5) = foo(@)))
\ (FHO L, (¥ - 1))
_ 4nCov J T2 T8 W (w;) Ty 8(ws) Urba (w5) = fagba(w)),
\ 77 Zeh vEO) iy (Yee — melb0))
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= 4r Z Cov e TT20 W (w;)00 (w5) (b (w5) — fagba(w)), |

a,b,c=1 Wz/)f(O) Z;T=1 (nc - ”’C(OO))

where ITpq (wj) is the (b,a)-th element of I (w;) and other quantities are defined analo-
gously. Consider the two terms inside the curly brackets separately. Applying the same

argument as in Theorem 10.8.5 in Brockwell and Davis (1991), we have

T-1
_lf W (w;) 0 5(w;)(ITba (wj) = fagba(w))
j=0
1 ;’-1 e .
= 7 2 2 W (w;)dm(wi) Hog(w;) (If14 (wj) — Elf g, (w5)) Hogw;) + 0p(1),

where and I, (w;) denote the (f, g)-th element of the periodogram of €;. Applying The-
orem 10.3.1 in Brockwell and Davis (1991), we have
fzp,.. 0) Z (Yie — e(Bo)) = ZZ YE(0)Ha(0)eu + 0p(1),
l 1t=1
where H(0) = 2‘;‘_’__0 hj(6o) (see (1.3)). Therefore, their covariance is equal to
1 T T-1 n

3D D Wlws)the(ws) Hog(ws) Hoa(ws W (0) Ha(0)

t=1 j=0 f,g,l=1
X E {(Itsq (w;) — Elfgy (w;)) €u} + 0p(1)

T

= —Z Z W (w;) 8% (w;) Hiy (w; ) H o (w3 )95 (0) Hat (0) g1 + 0p(1)
t=1 f,g,l=1

B 2%' {/ W(w)H‘(w)g“qs“b(w)H"f(“’J)d‘”} X &fgl X {1/’0 (0)Hci(0) }+ op(1
f,gl 1

Some algebra shows that

Apg =2 Z [ [ Wt f"°( )H<w)w} X £ X ["’“‘”")'foo <0)H<0)]

=1
fs gf
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Proof of Corollary 1.7. We prove the second result. Because the argument is very
similar to Theorem 3 and Taniguchi (1979, Theorem 2), we only provide an outline. The

estimate 8 solves

dLr(d)
30 =0, (1.30)
and the pseudo-true value O satisfies
oL (6F)
e (1.31)

Consider a Taylor expansion of (1.30) around 87 :

OLr (B)  Lr(®) 5 sy _
o5 osag ©%)=0

where 9 lies between ] and @'. Rearrange terms and apply (1.31):

T1/2 (5_ éan) _ [ 2m 32LT(0)] (ZWT—l/zaiTBgH‘) _ 2WT1/23E2> (-6n)> .

T 9006 80
Furthermore,
2m BzLT(B)
WT 9808
- / W) | o Yog detlfop () + st { @)}
+28;'4(49"‘)’ 1 0) 2208 Bu;z? ),

because § —P 5{," and because of the continuity of the integrand. Also,

L ,0Lr (B7) oLm (67
1/2 \0 ) _ 1/29%00 \Y0
2nT _60 2nT —60

= —onT- 1/2ZW(wJ Bt { f ) U w03) = o))}
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+or-12 Z 3“(00 fa(0) (Yi—puo) + 05 (1)

= (M1)+ (M2) +0,(1).

Terms (M1) and (M2) satisfy a central limit theorem and can be analyzed in the same way
as terms (I) and (II) in (1.27). The limiting covariance matrix can be verified accordingly.
The detail is omitted. B

Proof of Theorem 4: It suffices to verify that Assumptions 1 to 4 in Chernozhukov and
Hong (2003) hold under our set of conditions. Relabel these assumptions as CH1 to CH4.
CH1 and CH2 are trivial. CH3 is implied by Lemma 1.1(1), 1.1(2) and 1.1(4). To verify

CH4, applying a second order Taylor expansion of Ly (8) around 8y (see CH4(i)):

oLt (6o)
06

02Lr (6o)

Lt (6) — Lt (6o) = (6 — 60)’ 9056’

+ 50~ do (6~ 60) + Rr (6)

with

2 q 2
Rr(6) = (0 - 90)’{6 L) 22t } (0 - t0).

where éT lies between 6 and 6y. Now

_1/90LT (80)
1/292T \Y0
T 08

-4 N(0,V).

Therefore, CHA4(ii) is satisfied (V corresponds to €2, in CH4). For CHA4(iii), note that V is

nonrandom and positive definite, and that

10%L7 (6p)
bolils,

_ Tz‘ Wi (22U lDY oy o i (2l

_ —/W w;) (BveC(af;.l)(w))) {foo (w) ®f901( )} (avecaf;;’o(w)))dw (1.32)

T
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+o(1), (1.33)

where the leading term on the right hand side is nonrandom and positive definite because

f3H(w), and

j’W ) (avec( éf;?(w)’))' (avec(éf;o(w))) "

are positive definite by Assumption 1.5 and local identification. It is O(1) because the
integrand is bounded; see Assumption 1.5. Therefore, CH4(iii) is satisfied. CH4(iv.a)
holds because

1 02Lr(fr) -1 &*Lr (6o)

IRe(0)| < |[T/20 - o) |- 606" 5600

b

where the second term can be made arbitrarily small by choosing ||§ — 8| small because of
(1.32) and the boundedness and continuity of dvec(fy(w))/d0' and fe_l(w) in # (Assump-
tions 1.3 and 1.5(ii)). CH4(iv.b) holds because of the preceding argument and the fact that
ITY/2(8 - 80)|* = O(1).

The proof for f7 involves the same argument and is therefore omitted. B
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1.8 Supplementary materials appendix 1

Table 1.1: Parameter values and the corresponding two smallest eigenval-
ues along the nonidentification curve

(2 P2 Pr g ,2- A A2

6o 1.500000 0.125000 0.750000 0.400000 7.09E-10 3.251348
Panel (a). Direction 1

& 1.507156 0.112571 0.749192 0.399139 1.47E-10 3.266554
02 1.514316 0.100134 0.748378 0.398272 4.73E-10 3.281960
03 1.521476 0.087698 0.747559 0.397401 9.56E-10 3.297558
04 1.528636 0.075262 0.746735 0.396525 1.15E-09 3.313348
05 1.535796 0.062827 0.745905 0.395644 5.33E-10 3.329337
O 1.542955 0.050392 0.745070 0.394758 1.79E-09 3.345526
6, 1.550114 0.037958 0.744229 0.393868 1.90E-09 3.361918
Os 1.557272 0.025524 0.743383 0.392973 1.82E-10 3.378520
g 1.564431 0.013091 0.742531 0.392073 1.80E-09 3.395333
610 1.571589 0.000659 0.741674 0.391168 1.79E-10 3.412362
Panel (b). Direction 2

01 1449285 0.213085 0.755581 0.405975 2.19E-10 3.148993
6_> 1398558 0.301193 0.760920 0.411732 1.30E-11 3.054759
0_3 1347819 0.389321 0.766031 0.417282 5.23E-13 2.967750
6_4 1.297070 0.477467 0.770930 0.422636 1.12E-12 2.887193
05 1.246311 0.565629 0.775628 0.427803 3.63E-12 2.812419
0.6 1.195543 0.653807 0.780138 0.432793 6.18E-12 2.742843
6_7 1144767 0.741998 0.784471 0.437615 3.12E-12 2.677957
0_g 1.093985 0.830202 0.788638 0.442275 3.33E-12 2.617315
6_o 1.043195 0.918417 0.792647 0.446783 4.15E-12 2.560521
0_10 0.992400 1.006643 0.796507 0.451145 3.76E-12  2.507230

Note. 0; represent equally spaced points taken from the nonidentification
curve extended from g for 14475 steps in direction 1, and for 101972 steps
in direction 2. A; and A represent the smallest and the second smallest
eigenvalues of G(6;)° respectively. The step size of the approximation is
1075, Along direction 1, the curve is truncated at the closest point to zero
where 19 is still positive, as it determines the output weight in the Taylor rule
and must be nonnegative. Along direction 2, the curve is truncated at the
last point yielding a determinate solution. Results are rounded to the nearest
sixth digit to the right of decimal.
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Table 1.2: Deviations of spectra across frequencies (direction 1)

Spectral density matrix element number
(1,1) (2,1) (8,1) (2,2) (3,2) (4,2) (3,3)

Measure 1: Maximum absolute deviations across frequencies
8, 1.49E-07 1.68E-08 9.85E-08 1.99E-08 1.26E-08 1.99E-08 5.80E-08
6, 2.96E-07 3.40E-08 1.97E-07 3.98E-08 2.52E-08 3.98E-08 1.16E-07
;s 4.43E-07 5.11E-08 2.94E-07 5.83E-08 3.68E-08 5.83E-08 1.75E-07
6y 5.93E-07 7.13E-08 3.97E-07 7.76E-08 4.87TE-08 7.76E-08 2.36E-07
s 7.35E-07 8.51E-08 4.88E-07 9.78E-08 6.18E-08 9.78E-08 2.89E-07
s 8.82E-07 1.02E-07 5.86E-07 1.18E-07 7.43E-08 1.18E-07 347E-07
6; 1.04E-06 1.24E-07 6.92E-07 1.37E-07 8.64E-08 1.37E-07 4.11E-07
s 1.19E-06 1.37E-07 7.88E-07 1.59E-07 1.01E-07 1.59E-07 4.64E-07
6 1.34E-06 1.57E-07 8.91E-07 1.79E-07 1.13E-07 1.79E-07 5.27E-07
610 1.49E-06 1.76E-07 9.94E-07 1.99E-07 1.25E-07 1.99E-07 5.89E-07

Measure 2: Maximum absolute deviations across frequencies in relative form
6, 6.66E-09 2.11E-09 7.03E-09 8.19E-10 7.02E-09 9.83E-09 6.34E-09
6; 1.32E-08 4.28E-09 1.40E-08 1.64E-09 140E-08 1.97E-08 1.26E-08
0; 1.98E-08 6.43E-09 2.10E-08 244E-09 2.06E-08 2.89E-08 1.91E-08
04 2.65E-08 8.97E-09 2.83E-08 3.32E-09 2.75E-08 3.87E-08 2.58E-08
05 3.28E-08 1.07E-08 3.48E-08 4.08E-09 3.45E-08 4.85E-08 3.15E-08
0 3.94E-08 1.29E-08 4.18E-08 4.91E-09 4.15E-08 5.83E-08 3.78E-08
07 4.62E-08 1.56E-08 4.93E-08 5.80E-09 4.85E-08 6.83E-08 4.49E-08
0z 5.29E-08 1.73E-08 5.62E-08 6.60E-09 5.62E-08 7.89E-08 5.07E-08
0y 5.98E-08 1.97E-08 6.35E-08 7.46E-09 6.31E-08 8.87E-08 5.75E-08
610 6.66E-08 2.22E-08 7.09E-08 8.34E-09 7.01E-08 9.86E-08 6.43E-08

Measure 3: Maximum relative deviations across frequencies
6, T7.57E-09 3.01E-08 2.01E-08 4.64E-09 9.15E-09 1.20E-08 6.34E-09
0; 148E-08 6.36E-08 4.14E-08 9.33E-09 1.83E-08 241E-08 1.26E-08
ds 2.25E-08 8.82E-08 b5.91E-08 1.36E-08 2.68E-08 3.53E-08 1.91E-08
6, 2.96E-08 1.27E-07 8.27E-08 1.82E-08 3.56E-08 4.72E-08 2.58E-08
0 3.69E-08 1.54E-07 1.01E-07 2.29E-08 4.50E-08 5.93E-08 3.15E-08
6s 4.42E-08 1.89E-07 1.23E-07 2.76E-08 5.41E-08 7.13E-08 3.78E-08
6; 5.13E-08 231E-07 1.48E-07 3.23E-08 6.31E-08 8.34E-08 4.49E-08
6s 591E-08 2.60E-07 1.68E-07 3.74E-08 7.33E-08 9.66E-08 5.07E-08
s 6.67E-08 2.92E-07 1.89E-07 4.20E-08 8.22E-08 1.08E-07 5.75E-08
610 7.42E-08 3.28E-07 2.12E-07 4.67E-08 9.13E-08 1.21E-07 6.43E-08

Note. 6; to 6,9 are as defined in Table 1.1. The omitted elements display identical
deviations to the ones reported here.
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Table 1.3: Deviations of spectra across frequencies (direction 2)

Spectral density matrix element number
(1,1) (2,1) (3,1) (2,2) (3,2) (4,2) (3,3)

Measure 1: Maximum absolute deviations across frequencies
6_1 8.49E-07 8.20E-08 5.00E-07 1.45E-07 9.87E-08 145E-07 2.52E-07
6_» 1.69E-06 1.59E-07 1.01E-06 2.75E-07 1.86E-07 2.75E-07 5.28E-07
6_3 2.52E-06 2.34E-07 1.53E-06 3.95E-07 264E-07 3.95E-07 8.18E-07
6_4 3.35E-06 3.07E-07 2.06E-06 5.04E-07 3.34E-07 5.04E-07 1.13E-06
6_5 4.17E-06 3.83E-07 2.60E-06 6.02E-07 3.96E-07 6.02E-07 1.46E-06
6_¢ 4.99E-06 4.64E-07 3.16E-06 6.91E-07 4.50E-07 6.91E-07 1.80E-06
6_; 5.80E-06 5.58E-07 3.72E-06 7.72E-07 4.98E-07 7.72E-07 2.17E-06
6_g 6.62E-06 6.76E-07 4.30E-06 8.44E-07 5.39E-07 8.44E-07 2.55E-06
6_g 7.43E-06 8.17TE-07 4.89E-06 9.10E-07 5.75E-07 9.10E-07 2.95E-06
0_10 8.26E-06 9.74E-07 5.50E-06 9.67E-07 6.04E-07 9.67E-07 3.38E-06

Measure 2: Maximum absolute deviations across frequencies in relative form

1 3.79E-08 1.62E-08 3.56E-08 3.65E-09 4.78E-08 6.30E-08  2.75E-08
—2 7.56E-08 3.07E-08 7.22E-08 7.67E-09 9.22E-08 1.23E-07 5.76E-08
3 1.13E-07 4.37E-08 1.09E-07 1.18E-08 1.34E-07 1.79E-07 8.93E-08
-4 1.50E-07 5.55E-08 147E-07 1.62E-08 1.73E-07 2.33E-07 1.23E-07
-5 1.86E-07 6.55E-08 1.86E-07 2.07E-08 2.09E-07 2.84E-07 1.59E-07
-6 2.23E-07 7.42E-08 2.25E-07 2.54E-08 242E-07 3.32E-07 1.97E-07
6_r 2.59E-07 8.06E-08 2.65E-07 3.01E-08 2.72E-07 3.76E-07 2.37E-07
6 2.96E-07 8.50E-08 3.07E-07 3.47E-08 3.00E-07 4.17TE-07 2.79E-07
0o 3.32E-07 1.03E-07 3.49E-07 3.92E-08 3.25E-07 4.55E-07 3.22E-07
6_10 3.69E-07 1.22E-07 3.92E-07 4.39E-08 3.48E-07 4.90E-07 3.69E-07

Measure 3: Maximum relative deviations across frequencies
6.1 4.78E-08 1.32E-07 9.81E-08 3.22E-08 6.66E-08 8.37E-08  5.00E-08
0_» 9.58E-08 2.46E-07 1.89E-07 6.14E-08 1.27E-07 1.60E-07 9.41E-08
0_3 1.43E-07 3.59E-07 2.78E-07 8.84E-08 1.82E-07 2.31E-07 1.34E-07
0_4 1.89E-07 4.65E-07 3.64dE-07 1.13E-07 2.32E-07 2.96E-07 1.69E-07
6.5 2.34E-07 5.67E-07 4.48E-07 1.36E-07 2.78E-07 3.5TE-07  2.00E-07
f_¢ 2.80E-07 6.66E-07 5.31E-07 1.56E-07 3.19E-07 4.12E-07 2.27E-07
0_7 3.24E-07 7.62E-07 6.12E-07 1.75E-07 3.56E-07 4.63E-07 2.50E-07
0_g 3.69E-07 8.55E-07 6.92E-07 1.92E-07 3.89E-07 5.09E-07 2.79E-07
0_g 4.13E-07 9.47E-07 7.71E-07 207E-07 4.19E-07 551E-07 3.22E-07
6_y0 4.57TE-07 1.04E-06 8.51E-07 2.21E-07 4.44E-07 5.90E-07 3.69E-07

Note. 0_; to 6_;¢ are as defined in Table 1.1. The omitted elements display identical
deviations to the ones reported here.
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Table 1.4: Rank sensitivity analysis

Differentiation step size x g
1E-02 1E-03 1E-04 1E-05 1E-06 1E-07 1E-08 1E-09

TOL

Rank of G(6p) in the 13-parameter model
1E-02 10 10 10 10 10 10 10 10
1E-03 10 10 10 10 10 10 10 10
1E-04 11 10 10 10 10 10 10 10
1E-056 11 10 10 10 10 10 10 10
1E-06 11 11 10 10 10 10 10 11

1E-07 12 11 10 10 10 10 10 11
1E-08 12 12 11 10 10 10 11 12
1E-09 12 12 11 10 10 10 11 12
1E-10 12 12 12 11 10 10 12 12
Default 12 12 11 10 10 10 11 12

Rank of G(6) in the 11-parameter model
1IE-02 10 10 10 10 10 10 10 10
1IE-03 10 10 10 10 10 10 10 10
1IE-04 11 10 10 10 10 10 10 10
1IE-05 11 10 10 10 10 10 10 10
1IE-06 11 11 10 10 10 10 10 11
1E-07 11 11 10 10 10 10 10 11
1IE-08 11 11 11 10 10 10 11 11
1E-09 11 11 11 10 10 10 11 11
1IE-10 11 11 11 11 10 10 11 1
Default 11 11 11 10 10 10 10 11

Note. TOL refers to the tolerance level used to determine the rank. Default refers to
the MATLAB default tolerance level.
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Note. The nonidentification curve is given by 88(v)/0v = ¢(8), 6(0) = 6y, where ¢(8) is the eigenvector corresponding to the only zero eigenvalue
of G(6). The curve is computed recursively using the Euler method, so that 8(v;+,) = 0(v;) + ¢{(6{v;)}k, where h is the step sizc. fixed at 10-05.

(%1, ¥2. pr. 02) change simultaneously along the curve in the indicated directions. Directions 1 and 2 are obtained by restricting the first element
of ¢(8) to be positive or negative respectively. Since a negative Taylor rule weight contradicts economic theory, direction 1 is truncated at the
last point where 1 is nonnegative. Direction 2 is truncated at the boundary of the determinacy region. Consequently, the curve is extended
from 6, for 14,475 steps in direction 1, and for 101,972 steps in direction 2.

Figure 1-1: The nonidentification curve (11, v, pr, 02)



72

Chapter 2

Frequency Domain Analysis of Medium Scale
DSGE Models with Application to Smets and
Wouters (2007) (with Zhongjun Qu)

2.1 Introduction

Dynamic stochastic general equilibrium (DSGE) models have become a widely applied in-
strument for analyzing business cycles, understanding monetary policy and for forecasting.
Some medium scale DSGE models, such as that of Smets and Wouters (2007) (henceforth
SW (2007)), are considered both within academia and by central banks. These models typ-
ically feature various frictions, often involving a relatively large number of equations and
parameters with complex cross-equation restrictions. Although such sophistication holds
promise for delivering rich and empirically relevant results, it also poses substantial chal-
lenges for identification, estimation and model diagnostics. This chapter shows how these
issues can be tackled from a frequency domain perspective, using the framework developed
in the previous chapter (published as Qu and Tkachenko (2012)). We use SW (2007) as
the working example throughout the chapter, motivated by the fact that it has become
a workhorse model in the DSGE literature. The analysis of other medium scale DSGE
models can be conducted in a similar manner.

The identification of DSGE models is important for both model calibration and formal

statistical analysis, although the relevant literature has lagged behind relative to estimation
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until quite recently. Canova and Sala (2009) marks an important turning point by con-
vincingly documenting the types of identification issues that can surface when analyzing a
DSGE model. Iskrev (2010) gives sufficient conditions for the local identification of struc-
tural parameters based on the mean and a set of autocovariances. Qu and Tkachenko (2012)
and Komunjer and Ng (2011) are the first to provide necessary and sufficient conditions
for local identification. In the previous chapter, we have shown that taking a frequency
domain perspective can deliver simple identification conditions applicable to both singular
and nonsingular DSGE systems without relying on a particular (say, the minimum state)
representation.

In this chapter, we show that the methods developed in Chapter 1 of this thesis can
be applied in a straightforward manner to SW (2007) to deliver informative results. We
structure our identification analysis into the following steps: (1) Identification based on
the second order properties. This shows whether the parameters can be identified based
solely on the dynamic properties of the system. (2) Identification based on the first (i.c.,
the mean) and the second order properties. This reveals whether the information from
the steady state restrictions can help identification. (3) Identification based on a subset of
frequencies. This is motivated by the fact that DSGE models are often designed to model
business cycle movements, not very long or very short term fluctuations. Upon completing
the above three steps, we find that the parameters in SW (2007) are unidentified without
further restrictions. (4) To obtain further insights, we derive the nonidentification curves
to depict parameter values that yield observational equivalence. The curves immediately
reveal which and how many parameters need to be fixed to yield local identification. Note
that the results from Steps (1) and (2) are in accordance with Iskrev (2010) and Komunjer

and Ng (2011, the web appendix). Although these findings are not new, the analysis is,
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and it also illustrates the simplicity of taking a frequency domain approach in this setting.
Issues in Steps (3) and (4) have not been previously considered for medium scale DSGE
models.

Next, we consider estimating SW (2007) from a frequency domain perspective using the
methodology developed in the previous chapter. The method has two features. First, it
allows for estimation and inference using a subset of frequencies, something that is outside
the scope of conventional time domain methods. This is important because DSGE models
are designed for medium term economic fluctuations, not very short or long term fluctu-
ations. Second, it is straightforward to conduct Bayesian inference and the computation
involved is similar to the time domain approach. Although we have analyzed the statistical
properties of this method in the previous chapter, we did not provide an application. This
chapter provides the first application of the method to a medium scale DSGE model.

Specifically, we follow SW (2007) in specifying the priors and An and Schorfheide (2007)
in obtaining the posterior mode and Hessian for the proposal distribution. A Random
Walk Metropolis (RWM) algorithm is used to obtain the posterior draws. We start with
inference using the mean and the spectrum, then the full spectrum only and finally consider
inference using only business cycle frequencies. The same priors are used throughout. For
the first two cases, we obtain estimates that are very similar to those of SW (2007). This
reflects the close linkage between the time and frequency domain likelihood. However, for
the third case, we obtain noticeably different estimates of the parameters governing the
exogenous disturbances. At the same time, the parameters governing contemporaneous
interactions of the observables remain similar with only a few exceptions. The impulse
response functions are noticeably different. To our knowledge, this is the first time such a

finding is documented in the DSGE literature.



75

Then, we contrast the model implied spectrum and absolute coherency with that ob-
served in the data. The analysis is motivated by Watson’s (1993) suggestion of plotting
the model and data spectra as one of the most informative diagnostics. It is also related
to King and Watson (1996), who compared the spectra of the three quantitative rational
expectations models with that of the data. Both the business cycle and the full spectrum
based estimates do a reasonable job in matching these two key features. The business cycle
based estimates achieve a better fit at the intended frequencies. However, they both under-
estimate the absolute coherency of the interest rate and other four variables (consumption
growth, investment growth, output growth, and labor hours). The latter finding suggests
a dimension along which the model can be further improved. To our knowledge, this is the
first time such analysis is applied to medium scale DSGE models.

Our results suggest that the frequency domain perspective affords substantial depth
and flexibility in identification analysis and in estimating the parameters of the model,
while remaining simple in application and comparable in terms of computational burden
relative to the conventional time domain methods. In practice, we suggest to carry out
both the business cycle and the full spectrum based analysis jointly. This allows us to
assess to what extent the results are driven by the very low frequency misspecifications,
which is a hard task to tackle using a time domain framework.

The remainder of the chapter is structured as follows. Section 2.2 includes a brief de-
scription of the SW (2007) model to make the chapter self-contained. Section 2.3 carries
out identification analysis and reports nonidentification curves. Section 2.4 presents estima-
tion results. Section 2.5 conducts model diagnostics from a frequency domain perspective.
Section 2.6 concludes. A more comprehensive summary of model equations is provided in

Section 2.7. All figures and tables are located in Section 2.8.
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2.2 The DSGE model of SW (2007)

SW (2007) has become a workhorse model in the DSGE literature and many medium scale
DSGE models consist of modifications or extensions of this model. It is an extended version
of the standard New Keynesian real business cycle model, featuring a number of frictions
and real rigidities. To make this chapter self-contained, we subsequently briefly describe
the structure of the model economy. Note that the discussion is meant to highlight the key
elements in the model, and a more detailed description of the model equations, variables,
and parameters is included in the mathematical appendix.

The model has seven observable endogenous variables with seven exogenous shocks.
In equilibrium, the model has a balanced growth path driven by deterministic labor-
augmenting technological progress. We focus on the log linearized system as in the original

article.

2.2.1 The aggregate resource constraint
The aggregate resource constraint is given by
Yo = CyCr + Gyly + 2y 2 + €]

Output (y;) is composed of consumption (¢;), investment (i;), capital utilization costs as
a function of the capital utilization rate (z), and exogenous spending (ef). The latter is
assumed to follow a first order autoregressive (AR) model with an i.i.d. Normal error term

(n{) and is also affected by the productivity shock (n¢) as follows:

€7 = Pg€i_y + Pgatly + 1.
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The coefficients ¢, i, and 2, are functions of the structural parameters, as shown in the

mathematical appendix.
2.2.2 Households

Households maximize a nonseparable utility function with two arguments (consumption
and labor effort) over an infinite life horizon. Consumption appears in the utility function
relative to a time-varying external habit variable. The dynamics of consumption follow

from the consumption Euler equation
¢ = cice—1 + (1 = e1) By + c2(le — Exles1) — ca(ry — Eymyyr) — €,

where l; is hours worked, r; is the nominal interest rate, and m; is inflation. The disturbance
term 6’{ can be interpreted as a risk premium that households require to hold the one period

bond. It follows the stochastic process
et = poet_y + 1.

Households also choose investment given the capital adjustment cost they face. The

dynamics of investment are given by
i =drig_1 + (1 — i1) Evigy + ioqe + €},
where ¢! is a disturbance to the investment specific technology process, given by
£} = pici1 + ;-
The corresponding arbitrage equation for the value of capital is given by

1 .
@ = q1Eiqee1 + (1 — q1) Eerfyy — (1o — Meq1) — gff with e} = ppeb_y + 7?.
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2.2.3 Final and intermediate goods market

The model has a perfectly competitive final goods market and a monopolistic competitive
intermediate goods market. It features a symmetric equilibrium where all firms make

identical decisions. At such an equilibrium, the aggregate production function is

yr = @p (aki + (1 - )l + 7)),

where a captures the share of capital in production, and the parameter ¢, is one plus the

fixed costs in production. Total factor productivity follows the AR(1) process

a __ aQ a
€ = Pa€p1 T 7.

The current capital service use (k7) is a function of capital installed in the previous pe-
riod (k;—1) and the degree of capital utilization (z;): & = ki—; + 2;. Furthermore, the
capital utilization is a positive fraction of the rental rate of capital (rf): z; = 2;7F. The

accumulation of installed capital (k;) is given by

ky =kiko_y + (1 — k1) 4 + koet,

where ¢! is the investment specific technology process as defined before.
The price mark-up, defined as the difference between the average price and the nominal
marginal cost, satisfies

W= a(kl — 1) + e} — wy,

where w, is the real wage. The firms set prices according to the Calvo model, leading to

the following New Keynesian Phillips curve

— P
my = My + meEymeyy — mapl + €L,
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where €7 is a disturbance to the price mark-up, following an ARMA(1,1) process given by
€F = PpEp_y + T — HpMli_1-

The MA(1) term is intended to pick up some of the high frequency fluctuations in prices.

Finally, cost minimization by firms implies that the rental rate of capital satisfies

rE = —(kf = 1)) + we.
2.2.4 Labor market

Labor is differentiated by an intermediate labor union. The wage mark-up is

1
,u;” = Wy — (O'[It + 1— by (Ct - /\Ct—-l)) .
Real wage w, adjusts slowly due to the rigidity
wy = wywi—1 + (1 — w1) (Bywpyr + Eemeqr) — wome + wame—y — wapy” + €y,

The wage mark-up disturbance is assumed to follow an ARMA(1,1) process:

€y = pwEiq + M — Buwlly-
2.2.5 Government policies

The empirical monetary policy reaction function is
= preoy+ (1= p) (rame + 7y (g — 47)) +74, [(We ~ 9) = (-1 —95-1)] + el
The monetary shock ¢} follows an AR(1) process:

r o __ r '
€ =Pr&1 7
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The variable y; stands for a time-varying optimal output level that is the result of a
flexible price-wage economy. More generally, we use superscript star to denote variables
in this economy. Such an economy needs to be solved along with the sticky price-wage

economy for the purposes of identification and estimation.
2.2.6 The model solution

Our analysis requires computing the spectral density matrix of the observed endogenous
variables. This is straightforward to obtain using the GENSYS algorithm of Sims (2002),
although other methods (e.g., Uhlig (1999)) can also be used.

The GENSYS algorithm requires representing the state variables in the following form:
FoSe = I'1S¢-1 + ¥ Z; + 11,

where S; is a vector of model variables that includes the endogenous variables and the
conditional expectation terms, Z; are exogenously evolving and possibly serially correlated
random disturbances, and (; are expectation errors. For SW (2007) (note that the ordering

of variables and parameters corresponds to our MATLAB code),

w x k% p8% k% % ok pk _ ok %k Ik W k 1.s :
St = [77t 7nf9ztvrt ’kt ithct’ztyyt!ltawtartaktyﬂ’t ,Zt,"'t,kt,Qt,Ct,it,yt,lt,"t, We, Tty
a b _9 i r P _w % * kx * * .
€81 E¢1 €8 € €1, €5 €1 s ey E(ify1), E(fin), E(rifa), E(g1), E(G41), E(ie+1),

E(ce41), E(rf1), B(ge1), E(lesr), E(Ter), E(wesr)],

where the elements 18 to 24 of S; correspond to the observables used for identification
analysis and estimation, which are (we use lower cases to stand for log deviations from the
respective steady state) output (y:), consumption (c;), investment (i;), wage (w;), labor

hours (I;), inflation (m;) and the interest rate (r;). The other elements correspond to
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model variables in both sticky and flexible price-wage economies, seven shock processes,
and twelve expectation terms. See the mathematical appendix for more information on the

elements of S; above. The vector of structural shocks is given by

Zy= (¢, np,nd mbu by,

where, as discussed above, n¢ is a technology shock, n} is a risk premium shock, 7{ is an
exogenous spending shock, 7} is an investment shock, 7] is a monetary policy shock, 7}
and n}’ price and wage mark-up shocks respectively. The elements of (; are all zero except
the last twelve entries that correspond to the one period ahead expectation errors of the
last twelve terms of S;. This implies that IT is of dimension 45 x 12, is an identity matrix
for the last twelve rows, and zero otherwise. The coefficients matrices I'g,I';, and ¥ are

functions of the structural dynamic parameters 8, consisting of

0 = (Pga» ﬂun#p, avw'r ‘P» Oc, /\1 ¢p$ Lun{wa Lpa ép» ahrﬂ’y TAys""yaPa paspbv Pg» p‘is Pr» pp» Pw»

0a,0b,0g,04,0r,0p,0w,7, ﬂv 6) Gy ¢w: €p, Ew).

Under conditions that ensure the existence and uniqueness of the solution (see p.12 in Sims

(2002)), the system can be represented as
St = 0151 + o2y,
where ©; and 6 are functions of 8 !, which further implies
S, =(I-6,L)"16uZ,. (2.1)

From the above vector moving average representation, we can easily obtain the repre-

!Therefore, a complete notation should be 6¢(8) and ©:(8). We omit such a dependence for simplicity.
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sentation for the observable endogenous variables. To see this, suppose that the observable

Y;, up to an unknown mean vector, is given by

(Ct —Ct-1, % — f—1, Yt — Ye—1. b, T, we — wt—lv"'t)- (2-2)

To map this to the solution (2.1), we simply let A(L) be a matrix of finite order lag

polynomials that specifies the observables, then we compute

A(L)S; = A(LY(I — ©,L) 162, (2.3)
with
[ (1,1) (1,18)  (1,19)  (1,20) (1,21) (1,22) (1,23) {1,24)
0 --- 1-L 0 0 0 0 0 0
(1,45)
0
0 1-L 0 0 0 0 0
0 0 1-L 0 0 0 0
0 0 0 1 0 0 0
A(L) =
7x45
0 0 0 0 1 0 0
0 0 0 0 0 1-L 0
0 0 0 0 0 0 0 1
0
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The vector moving average representation (2.3) plays a central role in our analysis. First,

it enables straightforward computation of the spectrum of Y;:
Jo(w) = o H(exp(~iw); 0)2(6) H(exp(~iw);6)", (2.4
where the asterisk denotes the conjugate transpose,
H(L;8) = A(L)(I — ©:L)"'6y,

and X(f) is the variance covariance matrix of Z;2. Second, we can easily compute the
impulse response functions and the variance decomposition. Third, the choice of A(L)
offers substantial flexibility as we can vary it to study estimation and inference based on
different combinations of variables.

For identification and inference based on the spectrum, there is no need to specify the
steady state. However, it is also straightforward to incorporate the mean into the analysis.
To see this, define an augmented parameter vector 4 that includes # and parameters affect-
ing only the steady state. Then, notice that for log linearized DSGE models the observables

Y, can typically be related to the log deviations (Y;#()) and the steady states (u(8)) via

Y: = u(8) + Y(6).

The specification in SW (2007) corresponds to Y,#(6) given by (2.1) and u(f) = (¥.%.7%.1, 7,

= =)/

%,7)’. The parameters 7,7 and 7 are functions of structural parameters and [ is a new

steady state parameter. The detailed discussion is presented in subsection 2.3.2 below.

2Note that in our code ©(#) is a 7 x 7 identity matrix, as we incorporate the shock standard deviations
into ¥ when we set up the dynamic system.
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2.3 Identification analysis

In this section we perform identification analysis based on the (first and) second order
properties of the model, consider identification from a subset of frequencies (business cycle
frequencies) and implement a robustness check for the results. The corresponding theoreti-
cal results have been derived in the previous chapter: see Theorems 1.1-1.2 and Corollaries
1.2-1.6. We conduct our identification analysis by setting €y to the posterior mean from

the Table 1A in SW (2007):

6o = (0.52,0.88,0.74,0.19,0.54,5.48,1.39,0.71,1.61, 0.59,0.73,0.22, 0.65,1.92, 2.03, 0.22,
0.08,0.81,0.95,0.18,0.97,0.71,0.12,0.90,0.97,0.45, 0.24, 0.52, 0.45, 0.24, 0.14, 0.24,

1.0043, 0.9984, 0.025,0.18, 1.5, 10, 10).

We choose the above parameter values for illustration purposes and because, given the
analysis, they are empirically reasonable values. In practice, the same analysis can be

carried out for other parameter values using the same methodology.

2.3.1 Analysis of SW (2007) based on the second order properties

To compute G(6p), the integral in G(6p) is approximated numerically by averaging over
10,000 Fourier frequencies from —4,9997 /5,000 to 4,9997/5,000 and multiplying by 2n.
We keep the step size for the numerical differentiation at 10~7 x fg, and use the MATLAB
default tolerance set at tol = max(size(G)eps(]|G||)) to decide whether an eigenvalue is
zero, where eps is the floating point precision of G. We obtain rank(G(6p)) = 36. Since
the dimension of 6 is 39, this implies that € is unidentified at 6p. Additionally, this result
suggests that a minimum of three parameters needs to be fixed to achieve identification.

Since the model is not identified, we can proceed to search for the nonidentified subsets
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of parameters. We find no such one-element subsets of 9 in Step 2. In the next step, we find
two subvectors that yield G(6p)* with one zero eigenvalue: (£, €y) and (¢, €5). This finding
is not surprising, as the parameters in each subset play very similar roles in the model after
linearization (they determine the speed of adjustment of prices and wages through the
Calvo probability, or the curvature of demand, respectively) and thus are not separately
identifiable. SW (2007) recognized that and fixed €, and ¢, in estimation. Iskrev (2010)
obtains the same result by applying his condition. We do not report the nonidentification
curves for these subsets, as they are trivial and are highlighted here for illustration purposes.

We then exclude all three-parameter subvectors that contain either of the two noniden-
tification sets identified above as proper subsets and continue the analysis. We find no
three- or four-element nonidentification subsets. However, we pinpoint one five-element

subvector which has one zero eigenvalue:

(@, A, B,96)

where ¢ is the adjustment cost parameter, A (denoted as h in SW (2007)) is the habit
parameter, v governs the steady state growth rate, § is the discount rate, and 4 is the
depreciation rate. This result is also in accordance with Iskrev (2010). After excluding
all subvectors containing the nonidentification sets highlighted above, we find no further
sources of nonidentification in this model. Therefore, our findings imply that fixing one
parameter out of each of (p, A7, 8,8), (§w,€w) and (&p, €p) is necessary and sufficient for
identification from the second order properties.

We then evaluate the nonidentification curve using the Euler method with step size
h = 107% in a small neighborhood around 6. The result is presented in Figure 2.1, which

demonstrates how, for each of ¢, A, v, 8 and 4, the parameters have to change simultaneously



86

in order to generate nonidentification. The curve is extended using (1.11) in the two
directions starting from 6, which are marked on the graph by the bold and dotted lines
respectively. It should be noted that § is increasing along direction 2. Since it represents
the discount rate, it cannot be larger than 1. Therefore, we truncate the direction 2 of the
curve at a point where 3 is closest to 1. This leaves us with only 472 steps in direction
2, which, compared to 670,000 steps computed for direction 1, is very small and hence in
the Figure 2.1 values corresponding to direction 2 look like a bold dot rather than a line.
Given the number of the steps computed, we did not reach the point where natural bounds
on parameters are violated along direction 1, but it is clear that we would truncate it at a
point where § reaches zero, A reaches zero, or é reaches 1, whichever happens first.

To give an illustration of parameter changes involved, we report ten points taken from
the curve at equally spaced intervals in each direction in Table 2.1. In addition, we report
the smallest and the second smallest eigenvalues of G(6p)® to show that its rank stays
constant along the curve.

To verify that the points on the curve indeed result in identical spectral densities, we
compute three different measures of the discrepancies between fg(w) and fg,(w) considered

in the previous chapter:

Maximum absolute deviation: mgél fort(w;) — faoni(w;)|
wj

maxy;ca | fon(w;) — foont(w;)]

Maximum absolute deviation in relative form

| fopni(ws)l
Maximum relative deviation: max | fonilws) — faont(w; )I,
w; €Q | fooni(w;)l

where fgni(w) denotes the (h,I)-th element of the spectral density matrix with parameter 9

and € is the set that includes the 5,000 frequencies between 0 and #°. In order to conserve

3There is no need to consider w € [, 0] because fo(w) is equal to the conjugate of fo(—w).
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space, we report 8 largest deviations that occur across all 49 elements of G(6)* computed
over 5,000 frequencies in descending order for points in Table 2.1. The results can be found
in Tables 2.2 and 2.3. They show that even the largest deviations are very small. Given
that there are numerical errors involved in the application of the solution algorithm and
the computation of the G(#)® matrix, and that the Euler method involves a cumulative
approximation error of order 104 in our case, we can conclude that the spectrum stays

the same along the curve.

2.3.2 Analysis of SW (2007) based on the first and second order properties

This subsection extends the analysis to incorporate the steady state of the model. The
measurement equations from SW (2007), relating the observables to the means and the log

deviations, are as follows:

dICONS, = F+cag-—c-1
dIINV, = F+iy—i
diIGDP;, = F+y— Y-
IHOURS, = I+,
diP, = 7+ m
dIWAG: = F+ w~ w1

FEDFUNDS;, = 7T+ry,

where | and dl stand for 100 times log and log difference, respectively; 5 = 100(y — 1),
# = 100(I1, — 1), and 7 = 100(8~19°<IL, — 1) = B~ 1977 + 100(~'4°c — 1). Among the
means, ¥ is a function of the dynamic parameter 4, 7 and 7 depend on the common steady

parameter inflation rate II, and ! is a new parameter. Hence, we can augment § by two
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parameters and the full parameter vector becomes

9= (6,7,1).

We have 41 parameters in total and u(8) is given by

We set 7o = 0.78 and Iy = 0.53 as in Table 1A in SW (2007). u(6) can be differentiated
analytically in this case, e.g., using MATLAB’s symbolic math toolbox.

Applying Theorem 1.2 yields rank(G(fg)) = 39. Since now g = 41, the result tells us
that we cannot identify the parameter vector at 8y from the first and the second order
properties of the observables, and, furthermore, that two parameters need to be fixed to
achieve identification. The sources of nonidentification in this case are the two subsets
we have detected in the previous subsection, namely (§y,€y) and (€p,¢p). This result is,
again, not surprising and should be expected given the similar role the parameters play in
the model, as discussed in the previous subsection. We no longer detect the (¢, A, v, 8, 8)
subset as -y determines the steady state growth rate ¥ and hence can be identified from the
mean. Once v is identified, the rest of the four parameters are uniquely determined. Iskrev
(2010) reaches the same conclusion. Thus, fixing one parameter from each of (&, €,,) and

(&p, €p) is necessary and sufficient for identification based on the mean and the spectrum.

2.3.3 Analysis of SW (2007) using a subset of frequencies.

In this subsection we examine identification from a subset of frequencies. Specifically,
we focus on business cycle frequencies. We use the conventional definition, i.e., treat all

frequencies corresponding to periods between 6 and 32 quarters as business cycle frequencies
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(see, e.g., King and Watson (1996)). We compute both GW (6p) and G (8p) to examine
identification from the second, and first and second order properties of the observables.
We obtain rank(GW (6)) = 36 and rank(—G—W(ao)) = 39, which coincides with the results
obtained using all frequencies. All results and conclusions are the same as in the previous
two subsections. This shows that for this model business cycle frequencies have the same

local identification power at 8y and 8y as the full spectrum.
2.3.4 Robustness checks using nonidentification curves

The results above have been obtained using a particular step size for numerical differenti-
ation and the MATLAB default tolerance level for computing the ranks of the G(6) and
G(P) matrices. Here, we check the sensitivity of G(6p) to a range of numerical differentia-
tion steps (from 1072 to 10™%) and tolerance levels (from 1073 to 1071%). The results can
be found in Table 2.4. Although we report the rank sensitivity analysis results only for
G(8), similar checks have been performed for all of the matrices computed above to ensure
robustness of the reported rank.

It can be seen from the chapter that varying the differentiation step can affect the
rank decision. Specifically, the estimated rank changes if the step size is too large or too
small, and when the tolerance level is more stringent. This is quite intuitive, as when the
step size is too large, the numerical differentiation will induce a substantial error, since the
estimation error for the two-point method is of the same order as the step size. When the
step size is too small, the numerical error from solving the model using GENSYS will be
large relative to the step size, therefore the rank will also be estimated imprecisely. In this
example, the step size 1e-07x8p and the MATLAB default tolerance level seem to produce

good balance between precision and robustness.
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The dependence of the results on the step size and the tolerance level is certainly
undesirable. To address this issue, we suggested previously that the nonidentification curve
analysis be embedded into the following two-step procedure to reduce the reliance on step

size and tolerance level:

e Step 1. Compute the ranks of G(p) using a wide range of step sizes and tolerance

levels. Locate the outcomes with the smallest rank.

e Step 2. Derive the nonidentification curves conditioning on the smallest rank re-
ported. Compute the discrepancies in spectral densities using values on the curve
to confirm observational equivalence. If the discrepancies are large, proceed to the
outcome with the next smallest rank and repeat the analysis. Continue until spectral

densities on the curve are identical or full local identification is established.

In applications, it often suffices to compute as few as 10 points on the nonidentification
curve to establish whether spectral densities are identical or not, as in the latter case the
deviations become quite large only a few steps away from 6y, so the computational burden
involved is not large. Applying this procedure using the step sizes and tolerance levels in
Table 2.4 leads to the same conclusion as stated above. This is because 36 is the smallest
rank in the Table 2.4 (Step 1) and the discrepancies between fy(w) and fg,(w) along the
curves are negligible (Step 2). In summary, this example demonstrates another reason why

nonidentification curves can be a useful tool for identification analysis.

2.4 Estimation and inference
We also consider estimating the model of SW (2007) from a frequency domain perspective.

We start with briefly summarizing the quasi-Bayesian estimation procedure proposed in

Section 1.5.
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2.4.1 The basic framework

First, we consider the quasi-likelihood functions implied by the linearized DSGE model.
Under the assumption that the DSGE system is nonsingular (i.e., ny < n.), which is satis-
fied by the SW (2007) model, the approximate generalized Whittle log likelihood function
of @ based on the sample Y3, ..., Yr is given by

T-1

Lr(8) = = Y _ W(w;) [logdet (fo(w;)) + tr {5 (wi)Ir (wi)}],

j=1

where w; = 273 /T (j = 1,2,...T — 1) denote the Fourier frequencies, W(w;) is the indicator

function as defined in the identification section. and It (w;) is the sample periodogram.

Define the discrete Fourier transform of the data by

1
wr (wj) = \/27!'_T

T
ZYtexp(—'iwjt) , i=12,..,T -1,
t=1

then the periodogram can be computed as It (w;) = wr (w;) w} (w;) . Note that maximizing
Lt (8) allows us to estimate dynamic parameters based on the spectrum of {Y;} without
any reference to the parameters that only enter the steady state. Also, unlike for time
domain QML, the estimates can be obtained without demeaning the data, since the values
of wr (wj) at the Fourier frequencies are not affected by replacing Y; by Y; — u(9) in the
definition of wr (w;) above.

The extension to estimation of both dynamic and steady state parameters jointly is

straightforward. Let

T
wg 7 (0) = 7237—? ;m — 1(8)) and I 1 (0) = g (0) ws.1 (0)' .

Since wj 7 (0) has a multivariate normal distribution with asymptotic variance f4(0) and

is asymptotically independent of wr (w;) for j = 1,2,...,T — 1, it can be shown that the
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approximate log likelihood function of 8 takes the form:

Ly (8) = Lt (8) - [logdet (f4(0)) + tr {f5' (0) 51 (0)}] .

Since the direct application of maximum likelihood methods to estimation of DSGE
models is plagued by the problem where the obtained estimates are often at odds with eco-
nomic theory, possibly due to the models’ stylized nature and potential misspecification, it
has become common practice to use Bayesian methods that introduce information not con-
tained in the observed sample via reweighting the likelihood by the relevant prior density
(see An and Schorfheide (2007) for discussion). This motivates us to incorporate prior dis-
tributions on the DSGE parameters into our estimation framework following Chernozhukov
and Hong (2003).

Specifically, for the dynamic parameter only case, we consider

n(6) exp (L (6))
Jo () exp (L1 (6)) do’

pT(f)) =

where m(@) can be a proper prior density or, more generally, any weight function that is
strictly positive and continuous over the parameter space. The function p,.(6) is termed
quasi-posterior in Chernozhukov and Hong (2003), because, while being a proper distribu-
tion density over the parameters, it is in general not a true posterior in the Bayesian sense,
as exp (L (0)) is a more general criterion function than the likelihood. The quasi-posterior

mean, given by
or = / Op,.(8)de,
e

can be taken as the estimate for 3. Computation of an estimate involves drawing a Markov

chain S = (61,6, ...6(B)) from the quasi-posterior density using a Markov chain Monte
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Carlo (MCMC) algorithm and computing the mean of the draws
br= Ly 00 (25)
B ot
Estimates of a given continuously differentiable function g: © — R, e.g., an impulse

response at a given horizon, can be obtained by computing
1 E
br) = — o). :
9(br) BJ;Q( ) (2.6)

In this chapter, we use the popular Random Walk Metropolis algorithm to generate draws
from p,.(6). It belongs to the more general class of Metropolis-Hastings algorithms, the
first version of which was proposed by Metropolis et al. (1953) and later generalized by
Hastings (1970). Schorfheide (2000) and Otrok (2001) were the seminal contributions in
using this algorithm for Bayesian estimation of DSGE models. We use the version of the
algorithm implemented in Schorfheide (2000). The steps involved and some discussion on

their practical implementation are presented below.

Step 1. Use numerical optimization to maximize Ly (8) + log(7(6)). The maximizer

is the posterior mode, denoted 6.

Step 2. Obtain the inverse of the Hessian computed at the posterior mode, denote it

=,

Step 3. Draw a starting value 8(®) from N(d, %), where c is a scaling parameter, or

specify a starting value directly.

Step 4. For s = 1,2..., B, draw ¥ from the proposal distribution N (8¢~ 2%).

Accept the draw (6(®) = ) with probability min{1,a(8¢*~1,9 | Y)} and reject it
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(6 = 9(s=1)) otherwise. The acceptance probability is

exp(Lr (9))m(9)
exp (L (8(=1)) m(ge-1))’

a6V, 9 |Y) =

e Step 5. Compute the posterior mean estimates as in (2.5) and (2.6).

In Step 1, one of the practical problems that may be encountered by an optimization
algorithm is the possible lack of existence or uniqueness of the solution for the DSGE
model. To circumvent these issues, we use the csminwel optimization routine written by
Chris Sims (see Leeper and Sims (1994)), which randomly perturbs the search direction if
it reaches a cliff caused by indeterminacy or nonexistence. Regarding the prior, we use the
same m(#) as in the Table 1A in SW (2007).

In Step 2, the Hessian matrix, computed assuming Normality, has its (j,()-th element
given by

) . afs Y (w) af;!
£ = Z%/W(w)tr [fa(w) gaojw f5(w) (Jagl(w) dw,

which can be estimated by replacing the integral with an average over the Fourier frequen-
cies.

In Step 4, the choice of the scaling parameter c is determined by calibrating the ac-
ceptance rate of the Markov chain. Roberts et al. (1997) suggested a heuristic rule to
use proposal distributions with an acceptance rate close to 25% for models of dimension
higher than two under the assumption that both the target and the proposal distribution
are Normal. Since this assumption is not satisfied in our case, we follow the literature by
drawing several Markov chains with acceptance rates between 25% and 40%. Therefore,
while keeping the seed of the random number generator fixed, we try a range of values

for ¢ until we find one that yields the desired acceptance rate. In our experience, for a
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given ¢ and a random number generator seed, computing the acceptance rate of a chain of
1,000-5,000 draws gives a good idea about what to expect from a much longer chain. Also,
we may draw 1 that yield indeterminacy or nonexistence of the DSGE solution, or contain
parameter values that violate the specified bounds (our bounds are as in the Dynare code
of SW (2007)). In such cases, we set Lt (8) + log(7(6)) to a very large negative number
(—1e10) so that such draws are always rejected.

We first perform estimation of § based jointly on the mean and the full spectrum of
observables, as this closely mirrors the analysis of SW (2007) conducted from a time domain
perspective. In order to enhance comparability of results, five parameters are kept fixed in

estimation, as in SW (2007), at the following values

€p = € = 10,0 = 0.025,g, = 0.18, A\, = 1.5.
2.4.2 Estimation based on the mean and the full spectrum

The data we use is that used in SW (2007) and we consider the same sample period as in
their Dynare code, namely (Q1 1965 - Q4 2004). The prior distribution is kept the same
as in SW (2007) and is presented in Table 2.5. For each Markov chain, a sample of 250,000
draws from the posterior distribution is generated, and the first 50,000 draws are discarded
as burn-in. We report results for ¢ = +/0.15 as the scaling constant, which resulted in the
acceptance rate of 24%?. It should also be noted that the theoretical spectral density at
frequency zero is singular, because the observables contain first differences of stationary
variables. Computationally, we deal with this problem by using the generalized inverse to
calculate f, 1(0) and the product of nonzero eigenvalues of f3(0) to obtain det (f5(0)). For

ease of comparison, we report the results for the former case alongside those obtained in

4Here and below we used several scaling factors yielding the acceptance rates between 25% and 40%,
and found that the results are not sensitive to these changes.
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SW (2007) in Table 2.6.

Overall, the parameter estimates in Table 2.6 are very similar to their counterparts
in SW (2007). The posterior means and modes are close. The 90% probability intervals
overlap for 38 out of the 41 parameters. The two exceptions are that our estimate of the
technology shock persistence (p,) is higher (0.98 compared to 0.95 in SW (2007)), while the
estimated persistence parameter of the exogenous spending shock (g,) is lower (0.92 versus
0.97). For these two parameters the corresponding 90% probability intervals are disjoint.
We can also single out a somewhat higher estimate of the elasticity of consumption o, (1.81
compared to 1.38), although there is still slight overlap in the 90% intervals, and a lower

estimate of the trend growth rate (7) of 0.27 versus 0.43 in SW (2007).

2.4.3 Estimation based on the full spectrum

We now perform estimation of § based on the full spectrum of observables. We consider
the same data set, prior, and MCMC algorithm, except we choose ¢ = 0.4, which produced
an acceptance rate of 23%. The results are reported in Table 2.7.

Overall, the parameter estimates in Table 2.7 are very similar to those based on the
mean and the full spectrum. The estimated trend growth rate is back in line with the
results of SW (2007), but the estimated mean discount rate goes up from 0.76% to 1.04%
on an annual basis. The rest of the estimates obtained using the full spectrum are virtualiy
the same as those in Table 2.6. We can also see that overall the estimation results using
the full spectrum are, as would be expected, very close to those obtained by SW (2007)

using time domain methods.
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2.4.4 Estimation using business cycle frequencies

DSGE models are constructed to explain business cycle movements. Schorfheide (2011)
emphasized that "many time series exhibit low frequency behavior that is difficult, if not
impossible, to reconcile with the model being estimated. This low frequency misspecifi-
cation contaminates the estimation of shocks and thereby inference about the sources of
business cycle”. Therefore, it is instructive to consider in what way if any the estimates
change when the estimation is carried out using business cycles frequencies only. Our pro-
cedure allows for such an investigation. We use the same methodology as in the previous
subsection to perform estimation of dynamic parameters, selecting only the frequencies
corresponding to cycles of 6 to 32 quarters and changing the variance tuning parameter to
¢ = v0.13 , which results in an acceptance rate of 23%. The results are reported in the
right panel of Table 2.7.

We find that a number of parameter estimates differ substantially from those obtained
using the full spectrum. The most notable differences pertain to the parameters govern-
ing the exogenous shocks. Specifically, the AR coefficient of the total factor productivity
process, p,, drops from 0.98 to 0.84 while the standard deviation of its shock remains
unchanged. The parameter governing the impact of productivity shocks on exogenous
spending, pge. is almost halved from 0.47 to 0.24. Additionally, the AR coefficient of the
wage mark-up process p,, comes down from 0.96 to 0.56 and its MA coeflicient u,, drops
from 0.92 to 0.32. The standard deviation of its shock decreases but the two posterior in-
tervals overlap. On the other hand, the AR coefficients for risk premium (p;) and monetary
policy (pr) shocks rise from 0.21 to 0.75, and from 0.09 to 0.34 respectively. The standard
deviations of the respective shocks decrease from 0.24 and 0.24 to 0.08 and 0.13, respec-

tively. The parameter differences outlined above are significant in the sense that their 90%
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probability intervals do not overlap. For the remaining three shock processes, exogenous
spending, monetary policy and price mark-up, the magnitudes of the AR and MA coeffi-
cients either remain the same or show a small decrease, while the standard deviations of
these shocks become smaller. Other notable differences in estimated parameters include
the adjustment cost elasticity (), which goes down to 3.03 from 5.76, the degree of price
indexation (1p), which increases from 0.21 to 0.61, and the coefficient on the lagged interest
rate (p), which goes down from 0.85 to 0.76. These results imply that the model estimated
using business cycle frequencies will potentially deliver different impulse responses from

those obtained using the full spectrum. We explore this issue in the next section.

2.5 Impulse response analysis

Motivated by the differences found between parameter estimates obtained using the full
spectrum and business cycle frequencies, we estimate the impulse response functions of the
seven observables to the shocks for the two cases. Figures 2.2 through 2.8 report the poste-
rior means, along with the 90% posterior intervals for horizons of up to 20 quarters. Each
figure corresponds to a single observable. One notable difference between the responses of
nearly all of the variables to a risk premium shock is that the impulse respohses obtained
using business cycle frequencies display a hump shaped dynamic, as opposed to an almost
monotonic decay of those obtained using the full spectrum, as well as those in SW (2007).
One exception is wage, where the impulse response with the full spectrum is itself somewhat
hump shaped, but still the hump shaped pattern of the business cycle impulse response is
much more pronounced. In all other cases it appears that the effects of both exogenous
spending and investment shocks are in general significantly less pronounced when business

cycle frequencies are used for estimation, perhaps with the exception of an investment
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shock to inflation and an exogenous spending shock to consumption and wage, for which
the differences are not as clear cut. The effect of a wage mark-up shock dies out faster for
all variables if estimated using business cycle frequencies. Its effects are also significantly
less pronounced after about 5 quarters for consumption and wage, after 10 quarters for
output and labor hours, and for the whole 20 quarters for inflation and interest rate. It is
interesting to note that the business cycle impulse response of investment to this shock is
more pronounced initially for about five quarters, but then goes to zero faster after about 14
quarters. The monetary policy shock also has smaller impact and goes to zero faster. Little
difference can be observed when considering the responses to the price mark-up shock, as
the two posterior intervals mostly overlap for the whole 20 quarters. However, responses
become less pronounced and decay faster for consumption after roughly 10 quarters, and
for output and labor hours after 15 quarters. The responses to the productivity shock are
also very similar to the full spectrum case, except for the cases of output, consumption
and wage, for which the response is lower and decaying faster in the casec of business cycle
frequencies.

It is important to ask whether the difference is due to the impact of the prior, which
has a greater effect in the business cycle frequency case as some information from the data
is discarded. We address this as follows. First, we compute the value of the log likelihood
constructed using the business cycle frequencies, but at the parameter values estimated
using the full spectrum. Then, we compare this value with the same likelihood function
computed using the estimates from business cycles. The results are reported in Table 2.8.
If the difference were in fact driven by the prior, then the latter would be smaller or of
similar magnitude to the former. The result suggests otherwise. Similarly, we evaluate the

log likelihood function constructed using the full spectrum at the business cycle estimates
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and compare with that at full spectrum estimates. The difference is even more pronounced.
Overall, the result suggests that estimates obtained from business cycle frequencies do a
good job at matching these frequencies, but are at odds with other frequencies, in this case
the very low frequencies.

Since the above analysis omits frequencies from both sides of the business cycle fre-
quency band, it leaves unclear which components are driving the difference. To investigate
this, we consider estimation omitting only frequencies below the business cycle band. Fig-
ures 2.9 to 2.15 contain the impulse responses for this case. The estimates from the business
cycle case are also included to ease the comparison. The figures show that results are over-
all similar to those using business cycle frequencies. Therefore, most of the differences
observed between the impulse responses computed using the full spectrum estimates and
those using business cycle frequencies can be attributed to the omission of the frequencies
below the business cycle band. There are a few deviations from this pattern. The hump
shaped responses of all seven variables to the risk premium shock observed in business
cycle results are no longer present. The same can be noted about the initial few quarters
of responses of inflation to the productivity and the price mark-up shocks, as well as of

wage to the price mark-up shock.

2.6 Model diagnostics from a frequency domain perspective

King and Watson (1996) compared the spectra of three quantitative rational expectations
models with that of the data. The models were calibrated and of small scale. Below, we
carry out similar analysis for the medium scale DSGE model considered here. The goal
of the analysis is two-fold. First, we examine whether the model captures the variability

of and the comovements between relevant macroeconomic variables. Second, we compare
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the model spectrum estimated using all frequencies with that using only business cycle
frequencies. The latter will highlight the potential value from using a subset of frequencies
in estimation.

We obtain nonparametric estimate of the spectral density by smoothing the peri-
odograms using demeaned data. Suppose Y; contains only one variable. Then, the es-

timator is given by

f(‘*’j) = Z Wr(k)Ir(wj4k) for j >1

[kf<m

and

F(0) = Wr(0)Ir(wi) + 2 > Wr(k)Ir(wj1k),
k=1

where m is a positive integer, Wr(k) is a weight function satisfying Wr(k) = Wr(—k),
Wr(k) > 0V k, 3\ j<m Wr(k) = 1 and IT(w;) is the periodogram of the data. The
estimator is consistent under mild conditions (see Brockwell and Davis (1991) for a rigorous
treatment) and the asymptotic 95% confidence intervals for the estimates of the log of

spectral density are given by

1/2
log(f(w;)) £1.96 | >~ Wr(k)?

[k|<m
We apply the same type of estimator to obtain absolute coherency between pairs of vari-
ables. Let Y; be a bivariate demeaned time series. The spectral density matrix is estimated
in the same way as above but with I7(w;+x) being a 2 x 2 matrix. Let fhk(wj) denote
the (h, k)-th element of f(w), then the absolute coherency estimate (]ﬁlz(wj)l) between Y,
and Yy, is

[Ri2(w;)] = [E2(w;s) + T (wi))2/ [ fi1(wj) faz(wj)) 2,
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where

Ga(w;) = [frzlws) + far(wj))/2,

Gi2(w;) = ilfia(w;) — far(wj)]/2.

The approximate 95% confidence bounds can be computed as follows

1/2
[Ria(w;)] £1.96(1 — [Ri2(wy)|?) | Y Wr(k)?*|  /V2.

[k|<m
In applications, the choice of Wr(k) depends on the characteristics of the data series at
hand. It is possible and sometimes advantageous to use different weighting functions for
estimation of different elements of the spectral density matrix due to potentially different
features of the time series (see Ch. 9 in Priestley (1981) for a discussion). In our case,
we apply the same weight function in all estimations, with m = 4 and the weights given

by {%, %, %, —231—, '2'3T’ —23—1, %, %, ili , which is obtained by the successive application of

two Daniell filters with weights given by {%, %, %} and {-37, %, -37, -17-, -17-, %, %} This choice of
Wr(k) produces spectra estimates that are not as rough as the raw periodogram, and in
the meantime do not appear oversmoothed.

Figure 2.16 plots the log spectra of the seven variables. Three results are reported
in each sub-figure. First, we report the nonparametric estimates of the spectrum of the
demeaned data series along with the pointwise 95% confidence intervals. They are used as
a benchmark to assess the model’s ability in capturing these key features. The solid curve
is the spectrum implied by the model with parameters estimated using the full spectrum.
The dashed line is the model spectrum with business cycle based estimates. Two patterns

emerge. First, the solid curve captures the overall shape of the data spectrum, although

there are noticeable departures which often occur inside of the business cycle frequencies. It
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should be noted that for the growth series (sub-figures i-iii,vi), the model implies that their
spectral density at frequency zero is zero (as the figure reports log spectra, the frequency
zero is omitted from the figures). This is inconsistent with the data spectra, which are
positive at the origin. When frequencies very near zero are included in the estimation,
the model will try to reduce such a departure by having very persistent estimates. This
potentially affects the other frequencies, which partly explains why the full spectrum based
estimates do not capture the slope of the spectrum very well inside of the business cycle
frequencies. When using only business cycle frequencies for estimation, such a tension is
absent and the estimates do a better job at matching variations at these frequencies. The
lines never fall substantially outside of the confidence bands. However, the departures from
the data spectrum can be substantial outside of the business cycle frequencies. In practice,
this offers the researcher a choice. If one firmly believes that the DSGE model is well
specified at all frequencies, then, they should all enter the estimation and the estimates
will be more efficient. If one suspects that the modeling of the trend, or, more generally, of
the very low frequency behavior in the model is inconsistent with the data (for example,
the data has a broken trend while the model has a linear trend), then the subset based
approach may be a more robust choice.

Figures 2.17 to 2.19 report the absolute coherency between the seven variables. Notice
that their values can be interpreted as a measure of strength of correlation at a particular
frequency. Both the business cycle and the full spectrum based estimates achieve something
at capturing their overall magnitudes, with the exception of the comovements between
interest rate and other four variables (consumption growth, investment growth, output
growth, and labor hours). In the latter case, the two estimates are close and are consistently

below the nonparametric estimates. This unanimous finding suggests a dimension along
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which the model can be further improved. For the other cases, the business cycle based
estimates typically do a better job at the intended frequencies. They largely stay within
the confidence intervals, and are better at capturing the peaks of the coherency, while the
full spectrum based estimates miss them in the majority of cases.

In summary, the DSGE model does a reasonable job at matching the spectra of individ-
ual time series and the absolute coherency implied by the data. The subset based estimates
offer the flexibility to focus on a particular frequency band and to achieve a better fit at
such frequencies. In practice, both analyses can be carried out, allowing us to assess to

what extent the results are driven by the very low frequencies.

2.7 Conclusion and discussion

This chapter has considered identification, estimation and inference in medium scale DSGE
models using SW (2007) as an illustrative example. A key element in the analysis is that we
can focus on part of the spectrum. For identification, we derived the nonidentification curve
to reveal which and how many parameters need to be fixed to achieve local identification.
For estimation and inference, we compared estimates obtained using the full spectrum with
those using only business cycle frequencies and reported notably different parameter values
and impulse response functions. Further analysis shows that the differences are mainly due
to the frequencies below the business cycle frequency band. We have also considered model
diagnostics by contrasting the model based and the nonparametrically estimated spectra
as well as examining the absolute coherency. The result suggests that SW (2007) does a
reasonable job at matching these two features observed in the data, with the exception
of the comovements between interest rate and other four variables (consumption growth,

investment growth, output growth, and labor hours). The subset based estimates, due to



105

their ability to focus on a particular frequency band, achieve a better fit at such frequencies.

From a methodological perspective, the results contribute to the relatively sparse lit-
erature that exploits the advantage of model estimation and diagnostics using a subset of
frequencies. Engle (1974) is a seminal contribution. It proposed band spectrum regression
as a way to allow for frequency specific misspecification, seasonality, measurement errors,
and to obtain better understanding of some common time domain procedures such as ap-
plying a moving average filter. Sims (1993) and Hansen and Sargent (1993) considered the
effect of removing or downweighting seasonal frequencies in estimating rational expecta-
tions models. Diebold, Ohanian and Berkowitz (1998) discussed a general framework for
loss function based estimation and model evaluation. In a different context, McCloskey
(2010) considered parameter estimation in ARMA, GARCH and stochastic volatility mod-
els robust to low frequency contamination caused by a changing mean or misspecified trend.
Qu and Tkachenko (2012) provided a comprehensive treatment of the theoretical and com-
putational aspects of the frequency domain quasi-likelihood applied to DSGE models. By
working through a concrete example, this chapter demonstrates that such an approach is
applicable to medium scale DSGE models and that it offers substantial depth and flexibil-
ity when compared with time domain methods. We intend to apply the methodology to a

relatively broad class of DSGE models and hope to report results in the near future.

2.8 Mathematical appendix 2

The numbering of the equations below corresponds to SW (2007). Subscript star denotes
steady state values. Note that some parameters are expressed as functions of the structural

parameters. We highlight such relationships when relevant.
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2.8.1 The sticky price-wage economy

1. The resource constraint is
Yt = CyCt + iyit + 242 + E‘;’.

Output (y:) divides into consumption (¢;), investment (i;), capital utilization costs
as a function of the capital utilization rate (2;), and exogenous spending (¢7). The

coefficients ¢y, iy and z, are functions of the following structural parameters.
gy, Y (Sv Bv Oc, ¢p, .
Their relationship to the coefficients above is:

iy = (y=1+08)ky,

ey = l—gy—iy,

_  pk
zy = RJky,

where ky is the steady state capital-output ratio, and RF is the steady state rental

rate of capital (see the Appendix to SW (2007)):
a—1
by = dp (L/k2)* ™ = 6 [(1 = @)/) (REfwl)] ™

with

1/(1-a)

a?(l - a (1-a) _

w.=( (¢ (Rk))a ) ande=ﬁ 1708-(1—6)-
P *

2. The dynamics of consumption follow from the consumption Euler equation

a = caci-1+ (1 —a)Ecisr + ca(ly — Edliyr) — c3(re — Eemppr + €2) =
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= c16-1 + (1 — &1)Eecesr + 2(l — Eeleyr) — ca(re — Eymyyr) — cae.
Here the basic parameters are
A Yy Ocy by ¢, 8

and some parameters in the resource constraint (1). Their relationship to the coeffi-

cients above is:

Ay _ (o= 1) (wiL./c) 1— My

AT 2T T (L4 A BT T+ el

where wPL, /c, are related to the steady state and are given by
11—« 1
h
w,L,/c, = ETR,’:ky_’
where R* and k, are defined as above, and

cy=1-gy— (v - 1+0d)k,.

It seems that

¢ = Ay instead of 1 + A,
In the code, c3e? is redefined as €2, that is
¢t = c1¢i-1 + (1 — e1) Ereesr + ca(le — Eiley1) — ca(re — Eymp) — b

Therefore the equation 4 (below) is also redefined accordingly.

3. The investment Euler equation is given by

iy = i18e—1 + (1 — 41) Epigq + d2ge + Eg.
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The basic parameters are

ﬂ 3 71 O¢, ‘P
i1 and i are related to them as

1 , 1
T T4 B0 2T (11 pr1-09) 4]

1
. The value of capital is given by

@ = q1Eeqer1 + (1 — q1) Birfyy - (Tt — Eymq + sf) .

The basic parameters are

B,v,0c, 6,
and parameters determining RX. Their relationship to the coefficient above is:

—oe . 1-3
@ =By (1 6)_R£5+1—6'

Note that the code is programmed using

1-4

N=EREr1-0

Because of the redefinition of €%, this equation appears as

1
@ = q1Eeqe1 + (1 — q1) Erfpy — (re — M) — c—sﬁf,

where

1-2/y

ST+ o
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5. The aggregate production function is
Y = ¢p (aki + (1 — o)l +€F) .

The basic parameters are

op, .

6. Current capital service use is a function of capital installed in the previous period

and the degree of capital utilization

kf = ky..1 + 2.

7. Degree of capital utilization is a positive fraction of the rental rate of capital
z = a7f,

where

1-9
T

2 =
The basic parameter is 1.

8. Households rent capital services to firms and decide how much capital to accumulate
given the capital adjustment cost they face. The accumulation of installed capital is
given by

ke = kike—1 + (1 — k1) ie + kael,

where

1-4
kl = ,k2 = (1 - '-"-—) (1 + ﬂ’Y(l_ac)) "72<p.
Y
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9. Price mark-up or the real marginal cost is

uh = a(kf —l) + et — wy.

10. The New Keynesian Phillips curve is given by

M = M M-y + T Eymyp1 — 7"3#? + €f,

where
(l—ac)
M o= —2 = __fl______,
1+ By(1-0e)y, 1+ By(1=0e)y,
_ 1 (1 - »67(1_a°)§p) (1 - fp)
Ty = .

1+ ﬂ'Y(l_ac)’«p ép ((¢p -1) Ept+ 1)

Besides the basic parameters defined above, we have in addition

tps€ps Ep-

11. The rental rate of capital is

rf = — (ki — lp) + w,.

Note that in the original paper k; instead of ki shows up. It is likely a typo, as in

their Dynare code SW (2007) have kf.

12. Labor is differentiated by a union. The wage mark-up is

1
ﬂ:” = Wt — (O'[lt + 1— X (Cg - /\ct..l)) .

A new basic parameter is

al.
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13. Real wage adjusts slowly due to the rigidity

w
wy = w1 + (1 — wy) (Bywer + Eymegn) — womy + wame—y — wapy + €,

where
_ 1 14 Byl1moe)y, _ lw
w1 1 +ﬁ’y(1_ac),w2 - 1 +IB’)’(1_0C) $w3 - 1 +ﬁ»7(1—0c),
1 (1 = By(1-29)¢g,) (1 = &)
wg = .

1+ ﬂ’)’““a") €w ((Pw — 1) ew + 1)

New basic parameters are

tws Ews Owy Ew-
14. The empirical monetary policy reaction function is
re = pre-1+ (1= p) (rame + 1y (4 — 97)) +ray (3 — v0) = (w1 —4i1)] + €t

The new basic parameters are

pv T7n TY9 TAy.

The shocks are (all AR and MA coefficients are basic parameters):

15.
€f = paEi-1 + ¢,
16.
ot = oo+,
17.

5? = PgEil + Pgaﬂ;z + mq,
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18.
£ = pi€s_y + 1},
19.
€ = pré;—1 + N5,
20.
€F = PpEi—1 + M — HpTi—1s
21.

€ = PwEi1 + M — Bl 1

2.8.2 The flexible price-wage economy

For the flexible price-wage economy, the equations are essentially the same as above,
but with the variables pf and ul set to zero. The shock processes are also the same, thus

we do not repeat them here.

1. The resource constraint:
Yr = ¢yl + iyty + 2y2f + €.
2. The dynamics of consumption follow from the consumption Euler equation
¢t = ac_y + (1 —a)Bictyy + e — Edfyy) — ca(rf —0) — &f.

Note that the expected inflation is zero because the price adjusts instantaneously.
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. The dynamics of investment come from the investment Euler equation
it = dyip_q + (1 — i1) Eyi%y + dag) + €}
. The corresponding arbitrage equation for the value of capital is given by
* * =k * 1 b
q = qEqiy + Q1-aq) Eeriy - (r{ = 0) - asz-
The expected inflation is zero for the same reason as above.

. The aggregate production function is
yr = dp(aki®+ (1 —a)l] +¢€7).

. Current capital service use is a function of capital installed in the previous period

and the degree of capital utilization
ki*=ki ,+z.
. The degree of capital utilization is a positive fraction of the rental rate of capital
2} = nrk.
. The accumulation of installed capital is
ki = kiki_y + (1 — k1) i} + kae}.

. Because pf = 0 and the relationship with rigidity is:u} = o (kf — l;) + €f — we, we
have

0=a(kf—l¢)+€§’—wt
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11.
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or, equivalently,

art® + (1 - a)w; = €.
There is no New Keynesian Phillips curve as price adjusts instantaneously.

The rental rate of capital is

ok = - (k- 1) + w}.

The wage mark-up is now u}’ = 0. Therefore,

* L 3 ]' * *
0=w; - (a,lt + 1 (ci - )\Ct-1)) ,

or

* * l * *
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2.9 Supplementary materials appendix 2

Table 2.1: Parameter values and the corresponding two smallest eigenval-
ues along the nonidentification curve

) A ¥ B d M A2

6o 5.740000  0.710000 1.004300 0.998400 0.025000 1.80E-10  0.392865
Panel (a). Direction 1

6 12.417476 0.482721 0.682812 0.862248 0.337109 1.96E-14  0.808082
) 19.113813 0.389080 0.550356 0.794406 0.465700 4.57E-14 1.210705
03 25.812574 0.334809 0.473589 0.750327 0.540228 3.01E-14  1.599268
04 32.512006 0.298325 0.42198 0.718141 0.590328 5.53E-15  1.975594
05 39.211698 0.271647 0.384246 0.693026 0.626964 3.26E-15  2.341212
s 45.911511  0.25105 0.35511 0.672563 0.655256 8.58E-15  2.697239
67 52.611389 0.234516 0.331724 0.655380 0.677954 1.04E-14  3.044732
O 59.311305 0.220873 0.312427 0.640622 0.696688 4.10E-15  3.384357
B9 66.011244 0.209364 0.296147 0.627727 0.712493 5.40E-15  3.716722
6o 72.711198 0.199485 0.282174 0.616303 0.726059 9.96E-16  4.042423
Panel (b). Direction 2

601 5.735346  0.710288 1.004707 0.998556 0.024605 5.27E-12  0.392485
0_2 5.730692 0.710576 1.005115 0.998711 0.024209 3.00E-12  0.392186
0_3 5.726038  0.710865 1.005523 0.998865 0.023812 2.95E-11  0.391895
0_4 5.721384  0.711154 1.005933 0.999019 0.023415 3.93E-11  0.391616
0_s 5.716730  0.711444 1.006342 0.999173 0.023018 9.91E-11  0.391323
06 5.712077  0.711732 1.006752 0.999328 0.022620 1.12E-10  0.391078
07 5.707423  0.712023 1.007162 0.999483 0.022221 8.78E-11  0.390749
0_s 5.702770  0.712314 1.007573 0.999638 0.021823 8.39E-11  0.390467
09 5.698117 0.712605 1.007984 0.999793 0.021423 1.97E-10  0.390278
f0_10 5693464 0.712896 1.008396 0.999948 0.021024 1.13E-10  0.389814

Note. 6; represent equally spaced points taken from the nonidentification curve extended from
f¢ for 670,000 steps in direction 1, and for 472 steps in direction 2. A; and ) represent the
smallest and the second smallest eigenvalues of G(6;)°. The step size for computing the curve
is 1074, Along direction 1, the curve is truncated at the point where 3 is closest to 1, as it

is the discount factor. Results are rounded to the nearest sixth digit to the right of decimal.
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Table 2.2: Deviations of spectra across frequencies (direction 1)
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&
)
0,
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fe
67
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610

8 largest deviations across frequencies and elements in descending order
1 2 3 4 5 6 7 8

Maximum absolute deviations across frequencies
8.99E-05 2.98E-05 1.24E-05 1.24E-05 1.09E-05 1.09E-05 9.24E-06 9.24E-06
1.17E-04 3.88E-05 1.61E-05 1.61E-05 1.42E-05 1.42E-05 1.20E-05 1.20E-05
1.31E-04 4.31E-05 1.79E-05 1.79E-05 1.59E-05 1.59E-05 1.33E-05 1.33E-05
1.38E-04 4.57TE-05 1.90E-05 1.90E-05 1.68E-05 1.68E-05 1.41E-05 1.41E-05
143E-04 4.74E-05 1.97E-05 1.97E-05 1.74E-05 1.74E-05 146E-05 1.46E-05
1.47E-04 4.85E-05 2.02E-05 2.02E-05 1.78E-05 1.78E-05 1.50E-05 1.50E-05
1.49E-04 4.94E-05 2.05E-05 2.05E-05 1.81E-05 1.81E-05 1.53E-05 1.53E-05
1.51E-04 5.01E-05 2.08E-05 2.08E-05 1.83E-05 1.83E-05 1.55E-05 1.55E-05
1.52E-04 5.06E-05 2.10E-05 2.10E-05 1.84E-05 1.84E-05 1.56E-05 1.56E-05
1.53E-04 5.10E-05 2.12E-05 2.12E-05 1.86E-05 1.86E-05 1.58E-05 1.58E-05

Maximum absolute deviations across frequencies in relative form
7.81E-06 5.33E-06 4.60E-06 4.34E-06 4.19E-06 3.73E-06 3.73E-06 3.34E-06
1.02E-05 6.93E-06 5.98E-06 5.66E-06 5.47E-06 4.86E-06 4.86E-06 4.39E-06
1.13E-05 7.73E-06 6.70E-06 6.32E-06 6.13E-06 5.41E-06 5.41E-06 4.89E-06
1.20E-05 8.18E-06 7.0TE-06 6.69E-06 6.49E-06 5.73E-06 5.73E-06 5.18E-06
1.24E-05 8.48E-06 7.31E-06 6.93E-06 6.71E-06 5.93E-06 5.93E-06 5.37E-06
1.27E-05 8.68E-06 7.50E-06 7.09E-06 6.86E-06 6.07E-06 6.07TE-06 5.50E-06
1.29E-05 8.82E-06 7.63E-06 7.21E-06 6.96E-06 6.18E-06 6.18E-06 5.59E-06
1.31E-05 8.91E-06 7.71E-06 7.28E-06 7.07E-06 6.25E-06 6.25E-06 5.61E-06
1.33E-05 8.98E-06 7.79E-06 7.34E-06 7.12E-06 6.31E-06 6.31E-06 5.66E-06
1.34E-05 9.05E-06 7.85E-06 T7.40E-06 7.18E-06 6.36E-06 6.36E-06 5.71E-06

Maximum relative deviations across frequencies
5.94E-05 5.94E-05 267E-05 267E-05 1.52E-05 1.52E-05 1.37E-05 1.37E-05
7.75E-06 7.75E-05 3.49E-05 3.49E-05 1.99E-05 1.99E-05 1.79E-05 1.79E-05
8.65E-05 8.65E-05 3.91E-05 3.91E-05 2.23E-05 2.23E-05 2.00E-05 2.00E-05
9.16E-05 9.16E-05 4.14E-05 4.14E-05 2.36E-05 2.36E-05 2.12E-05 2.12E-05
9.48E-05 9.48E-05 4.28E-05 4.28E-05 2.44E-05 244E-05 2.20E-05 2.20E-05
9.71E-05 9.71E-05 4.38E-05 4.38E-05 2.49E-05 249E-05 2.24E-05 2.24E-05
9.88E-05 9.88E-05 4.45E-05 4.45E-05 2.53E-05 2.53E-05 2.28E-05 2.28E-05
9.99E-05 9.99E-05 4.49E-05 4.49E-05 2.55E-05 2.55E-05 2.30E-05 2.30E-05
1.01E-04 1.01E-04 4.54E-05 4.54E-05 2.56E-05 2.56E-05 2.32E-05 2.32E-05
1.02E-04 1.02E-04 4.58E-05 4.58E-05 2.58E-05 2.58E-05 2.34E-05 2.34E-05

Note. 81 to @1¢ are as defined in Table 2.1. We report 8 largest deviations across 49
elements of each G(#;)° computed at 5,000 frequencies to conserve space.



117

Table 2.3: Deviations of spectra across frequencies (direction 2)

01
02
0_3
0_4
05
06
6_7
0-s
09
6_10

61
0_2
0_3
0-4
0-s
0_¢
0_7
0_g
0_o
0_10

01
0.2
0_3
0_4
0_s
06
07
0_s
09
0_10

8 largest deviations across frequencies and elements in descending order
1 2 3 4 5 6 7 8

Maximum absolute deviations across frequencies
1.59E-07 3.14E-08 3.14E-08 3.09E-08 1.77E-08 1.77E-08 1.65E-08 1.65E-08
2.38E-07 6.50E-08 4.93E-08 4.93E-08 2.33E-08 2.33E-08 2.27E-08 2.27E-08
3.54E-07 1.14E-07 5.52E-08 5.52E-08 3.80E-08 3.80E-08 2.59E-08 2.59E-08
5.88E-07 1.68E-07 8.09E-08 8.09E-08 7.20E-08 7.20E-08 5.26E-08 5.26E-08
8.55E-07 2.42E-07 1.12E-07 1.12E-07 1.07E-07 1.07E-07 8.22E-08 8.22E-08
1.08E-06 3.11E-07 1.34E-07 1.34E-07 1.24E-07 1.24E-07 8.90E-08 8.90E-08
1.32E-06 3.76E-07 1.82E-07 1.82E-07 1.54E-07 1.54BE-07 1.39E-07 1.39E-07
1.40E-06 4.11E-07 1.83E-07 1.83E-07 1.62E-07 1.62E-07 1.30E-07 1.30E-07
1.44E-06 4.42E-07 1.80E-07 1.80E-07 1.62E-07 1.62E-07 1.18E-07 1.18E-07
1.47E-06 4.57E-07 1.80E-07 1.80E-07 1.71E-07 1.71E-07 1.17E-07 1.17E-07

Maximum absolute deviations across frequencies in relative form
2.24E-08 1.54E-08 1.36E-08 1.16E-08 1.07E-08 9.44E-09 7.97E-09 7.78E-09
4.52E-08 3.14E-08 2.63E-08 1.82E-08 1.65E-08 1.56E-08 1.51E-08 1.51E-08
4.03E-08 2.96E-08 2.82E-08 2.75E-08 1.81E-08 1.48E-08 1.45E-08 1.45E-08
4.37TE-08 4.35E-08 3.55E-08 3.55E-08 3.00E-08 2.52E-08 2.30E-08 2.30E-08
1.07E-07 6.35E-08 4.97E-08 4.44E-08 3.98E-08 3.56E-08 3.56E-08 3.09E-08
1.50E-07 8.22E-08 5.96E-08 5.90E-08 5.21E-08 4.62E-08 4.62E-08 4.11E-08
1.69E-07 9.95E-08 7.35E-08 7.21E-08 5.73E-08 5.73E-08 5.08E-08 4.82E-08
1.81E-07 1.08E-07 7.71E-08 7.59E-08 6.21E-08 6.02E-08 6.02E-08 5.22E-08
1.87E-07 1.17E-07 7.91E-08 7.73E-08 7.12E-08 6.13E-08 6.13E-08 5.62E-08
1.91E-07 1.20E-07 8.17E-08 7.94E-08 7.69E-08 6.10E-08 6.10E-08 5.76E-08

Maximum relative deviations across frequencies
8.38E-08 8.38E-08 6.39E-08 6.39E-08 ©5.12E-08 5.12E-08 3.22E-08 3.22E-08
2.51E-07 2.51E-07 1.38E-07 1.38E-07 1.23E-07 1.23E-07 5.72E-08 5.72E-08
3.32E-07 3.32E-07 1.68E-07 1.68E-07 1.12E-07 1.12E-07 7.00E-08 7.00E-08
3.76E-07 3.76E-07 1.89E-07 1.89E-07 1.39E-07 1.39E-07 1.02E-07 1.02E-07
4.58E-07 4.58E-07 2.23E-07 2.23E-07 1.64E-07 1.64E-07 1.42E-07 1.42E-07
6.72E-07 6.72E-07 3.34E-07 3.34E-07 2.28E-07 2.28E-07 1.93E-07 1.93E-07
6.52E-07 6.52E-07 3.07E-07 3.07E-07 2.63E-07 2.63E-07 214E-07 2.14E-07
8.18E-07 8.18E-07 3.95E-07 3.95E-07 2.78E-07 2.78E-07 2.38E-07 2.38E-07
9.84E-07 9.84E-07 4.79E-07 4.79E-07 2.88BE-07 2.88E-07 2.55E-07 2.55E-07
1.06E-06 1.06E-06 5.19E-07 5.19E-07 297E-07 2.97E-07 2.62E-07 2.62E-07

Note. 8_1 to #_1¢ are as defined in Table 2.1. We report 8 largest deviations across 49
elements of each G(#;)® computed at 5,000 frequencies to conserve space.
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Table 2.4: Rank sensitivity analysis

Differentiation step size x 6y
1E-02 1E-03 1E-04 1E-05 1E-06 1E-07 1E-08 1E-09

TOL
Rank of G(6p)

1E-03 37 36 36 36 36 36 36 36
1E-04 37 37 37 36 36 36 36 36
1E-05 37 37 37 36 36 36 36 36
1E-06 37 37 37 36 36 36 36 36
1E-07 38 37 37 37 36 36 36 37
1E-08 39 37 37 37 36 36 37 37
1E-09 39 38 38 37 37 36 37 37
1E-10 39 39 39 37 37 37 37 39
Default 39 38 37 37 37 36 37 37

Note. TOL refers to the tolerance level used to determine the rank. Default
refers to the MATLAB default tolerance level.
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Table 2.5: Prior distribution of the parameters

Distribution Mean St. Dev.

Pga Normal 0.50 0.25
P Beta 0.50 0.20
Hp Beta 0.50 0.20
a Normal 0.30 0.05
Y Beta 0.50 0.15
P Normal 4.00 1.50
O Normal 1.50 0.38
A Beta 0.70 0.10
op Normal 1.25 0.13
tw Beta 0.50 0.15
&w Beta 0.50 0.10
tp Beta 0.50 0.15
& Beta 0.50 0.10
o} Normal 2.00 0.75
T Normal 1.50 0.25
TAy Normal 0.13 0.05
Ty Normal 0.13 0.05
P Beta 0.75 0.10
Pa Beta 0.50 0.20
Pb Beta 0.50 0.20
Pg Beta 0.50 0.20
Pi Beta 0.50 0.20
Pr Beta 0.50 0.20
Pp Beta 0.50 0.20
Pw Beta 0.50 0.20
Oq Invgamma  0.10 2.00
Op Invgamma  0.10 2.00
og Invgamma  0.10 2.00
a; Invgamma  0.10 2.00
or Invgamma 0.10 2.00
Op Invgamma  0.10 2.00
Ow Invgamma  0.10 2.00
¥ Normal 0.40 0.10
100(8! - 1) Gamma 0.25 0.10
T Gamma 0.62 0.10
1 Normal 0.00 2.00

Note. Prior distributions are taken from SW(2007) Dynare code.
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Table 2.6: Posterior distribution of the parameters

Full Spectrum and mean SW(2007) Tables 1 A,B
Mode Mean 5% 95% Mode Mean 5% 95%
Pga 0.48 048 0.38 0.58 052 0.52 0.37 0.66
Yow 0.94 092 088 096 0.88 084 0.75 0.93
Kp 0.68 066 051 0.78 0.74 069 0.54 0.85
a 0.20 020 0.18 0.22 0.19 0.19 0.16 0.21
P 0.72 0.70 0.56 0.83 0.54 054 0.36 0.72
% 5.47 5,72 426 7.41 5.48 5.74 397 7.42
Oc 1.83 181 1.56 208 1.39 1.38 1.16 1.59
A 0.64 0.65 0.59 0.71 0.71 0.71 0.64 0.78
bp 1.60 1.61 1.50 1.71 1.61 1.60 148 1.73
L 0.55 054 037 0.72 0.59 0.58 0.38 0.78
Ew 0.84 082 0.76 0.87 0.73 0.76 0.60 0.81
tp 0.19 0.21 0.10 0.33 0.22 0.24 0.10 0.38
ép 0.66 066 060 0.72 0.65 0.66 0.56 0.74
o]} 2.16 2.056 1.22 298 1.92 1.83 091 2.78
Tr 2.18 220 195 247 2.03 204 1.74 2.33
TAy 0.24 025 0.21 0.28 0.22 0.22 0.18 0.27
Ty 0.13 0.13 0.10 0.17 0.08 0.08 0.05 0.12
P 0.85 085 0.82 0.87 0.81 0.81 0.77 0.85
Pa 0.98 098 098 0.99 0.95 095 0.94 0.97
Pb 0.19 021 011 0.31 0.18 0.22 0.07 0.36
Pg 0.93 092 089 0.95 097 097 0.96 0.99
pi 0.71 0.71 0.64 0.78 0.71 0.71  0.61 0.80
Pr 0.08 010 0.03 0.17 0.12 0.15 0.04 0.24
Pp 0.86 08 0.78 0.91 0.90 0.89 0.8 0.96
Puw 0.97 096 094 0.98 097 096 094 0.99
Oa 0.47 048 044 0.51 0.45 045 041 0.50
Op 0.24 024 021 0.27 0.24 0.23 0.19 0.27
og 0.50 051 047 0.54 0.52 0.53 0.48 0.58
o; 0.47 047 042 0.53 045 045 0.37 0.53
or 0.23 024 022 0.25 0.24 0.24 0.22 0.27
op 0.14 014 012 017 0.14 014 0.11 0.16
Oy 0.25 0.25 0.22 0.27 024 024 0.20 0.28
o7 0.27 0.27 0.17 0.36 043 043 0.40 0.45
IOO(ﬂ_l -1) 0.17 0.19 009 0.32 .16 0.16 0.07 0.26
T 0.71 0.73 056 0091 0.81 0.78 0.61 0.96
1 0.52 041 -0.90 1.76 -0.1 0.53 -1.3 2.32

Note: 5% and 95% columns refer to the 5th and 95th percentiles of the distribution of RWM
draws.



121

Table 2.7: Posterior distribution of the dynamic parameters

Full Spectrum Business cycle
Mode Mean 5% 95% Mode Mean 5% 95%
Pga 048 047 038 0.57 024 024 011 037
Hw 094 092 0.88 096 0.28 032 0.11 0.58
tep 068 0.67 053 0.78 0656 055 024 077
@ 021 021 0.18 0.23 0.18 0.19 0.16 0.21
Y 0.70 068 0.54 082 0.52 056 034 0.77
7 5,52 576 432 7.39 255 3.03 215 4.37
o 190 188 161 216 1.31 1.50 118 1.95
A 064 064 0.58 0.70 0.58 055 045 0.66
op 1.61 1.61 1.51 1.72 143 146 134 1.59
Lw 055 055 037 0.72 0.58 056 033 0.79
§w 084 082 0.76 0.87 0.81 080 0.73 0.86
tp 0.19 021 0.10 0.33 066 061 035 0.83
& 066 066 0.60 0.71 070 069 062 0.76
ol 205 197 114 288 266 251 153 3.53
Tx 218 220 1.95 246 2.11 210 182 240
TAy 024 025 021 0.28 021 022 0.18 0.26
Ty 0.13 013 0.10 0.17 0.15 015 0.10 0.20
p 085 085 0.82 0.87 0.77 076 0.71 0.81
Pa 098 098 0.97 0.99 082 084 070 094
Pb 019 021 011 031 0.81 0.75 060 0.87
Py 092 092 0.8 095 090 083 0.83 095
pi 072 072 0.65 0.79 0.70 0.67 053 0.79
or 0.08 0.09 003 017 035 034 0.13 0.55
Pp 086 086 079 0091 0.80 075 048 091
Puw 097 096 093 0.98 0.57 056 037 0.73
Oq 047 048 0.44 0.51 0.47 048 042 0.55
ay 024 024 021 0.27 0.07 008 0.06 0.11
og 050 051 047 0.54 035 036 032 041
0; 047 047 042 0.52 033 038 0.27 0.53
oy 023 024 022 025 0.12 013 0.10 0.16
op 0.14 0.14 0.12 0.17 0.08 008 0.06 0.12
Ow 025 025 0.23 0.27 016 019 012 0.29
o7 040 041 025 0.57 0.39 040 0.23 0.56
100871 -1) 022 026 012 044 023 028 0.13 047

Note: 5% and 95% columns refer to the 5th and 95th percentiles of the distribution of
the RWM draws.



Table 2.8: Log likelihood and log posterior values at posterior modes

Posterior Mode

SW(2007) Full Spectrum Full Spectrum and Mean = BC Frequencies

Log likelihood

Full Spectrum 2390.46 2440.24 2440.18 1150.83
Full Spectrum and Mean  2351.66 n/a 2388.28 n/a
BC Frequencies 511.74 523.42 523.71 577.72

SW(2007) Full Spectrum Full Spectrum and Mean  BC Frequencies

Log posterior

Full Spectrum 2375.75 2418.07 2416.88 1153.54
Full Spectrum and Mean  2368.27 n/a 2412.28 n/a
BC Frequencies 497.03 501.25 500.40 580.43

Note. Entries in the table correspond to the log likelihoods/log posteriors, as specified by row labels, evaluated
at different posterior modes, which were computed by maximizing the log posterior specified by column labels.
For example, the upper left corner gives the value of the log likelihood constructed using Fourier frequencies
between 27 /T and 2m(T — 1) /T with the parameter value set to the posterior mode of SW(2007).

441
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Note. The nonidentification curve is given by 9(v)/0c = ((8). 8(0) = 8;, where ¢(0) is the eigenvector corresponding to the only zero eigenvalue
of G(#). The curve is computed recursively using the Euler method. so that 8{v;,,) = 8(v;) + c(6(v;))h, where h is the step size, fixed at l1e-04.
(. A.7. 3.6) change simultaneously along the curve in the indicated directions. Directions 1 and 2 are obtained by restricting the first element of ¢{9)
to be positive or negative respectively. Since a discount rate greater than 1 contradicts economic theory, direction 2 is truncated at the last point
where J is below 1. The curve is extended for 670,000 steps in direction 1. Since there are only 472 steps in direction 2, the respective curve appears

Number of steps away from 8, 10"

as a bold dot on the sub-figures.

Figure 2-1: The nonidentification curve (g, A, 7, 3,9)
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Figure 2-2: The estimated impulse responses of output to shocks



125

02 i} Labor hours 10 a productivity shock 06 ) Labor hours ta » nsk premium shock
0
0.2
04
2% 5 10 15 2 0 5 10 15 2
08 i) Labor hours to an exogenous spending shock ) Labor hours to an investment shock

¥) Labor hours to @ monetary policy shock

-0.60

5 10 15 2
vii) Labor hours to @ wage mark-up shock

02

0
02

P ior mean of impul p ot full sp ti
04 ~ = * Posterior mean of impul p at busi cycle estimates
T 20% posterior interval at full spectrum estimates estimates

08 I 30% posterior interval at business cycle estimates

o 5 10 15 2

Figure 2:3: The estimated impulse responses of labor hours to shocks
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i) Inflation to & productivty shock ii) Inflation to a nsk premium shock
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Figure 2-4: The estimated impulse responses of inflation to shocks
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Figure 2:5: The estimated impulse responses of interest rate to shocks
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i) Consumption 1o a productivity shock if) Consumption to a risk pramium shock
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Figure 2-6: The estimated impulse responses of consumption to shocks
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i) lnvestmaent to & productvity shock i) Investment to a risk premium shock
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Figure 2:7: The estimated impulse responses of investment to shocks
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Figure 2-8: The estimated impulse responses of wage to shocks
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i) Output to a productivity shock ii) Output to o risk premium shock
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Chapter 3

Frequency Domain QML Volatility Estimation
with Noisy High Frequency Data

3.1 Introduction

Integrated volatility (IV) of a financial asset is one of the key quantities in modern finance.
The ability to obtain accurate estimates of intraday volatility is crucial in the areas of
derivatives pricing, volatility forecasting, and evaluation of volatility models. It has been
argued that daily volatility measures constructed from high frequency data capture more
information and using them delivers better results in the above areas. However, despite the
ever increasing availability of high frequency data, the issues pertaining to microstructure
effects prevent researchers from using all of the available observations. The microstructure
noise is inherent in the data due to various trading frictions, data recording errors, sam-
pling methodology (i.e., using transactions or quote data), and becomes more severe at
higher sampling frequencies. The common practice in financial econometrics literature is
to aggregate data to lower sampling frequencies of 5 to 30 minutes in order to reduce the
influence of microstructure noise, which results in discarding most observations in the pro-
cess. Ait-Sahalia et al. (2005) have shown that if the microstructure noise is accounted for
in estimation, then it is optimal to sample as often as possible. These considerations have
motivated the growing literature on integrated volatility estimators robust to microstruc-

ture noise. Most of such suggested estimators are nonparametric. Specifically, one approach
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consists of bias corrected subsampling and averaging over different time scales. The seminal
contribution here is Zhang et al. (2005), who introduced the Two-Scale Realized Volatility
(TSRV) estimator, which is consistent at the rate of N/6 in the presence of i.i.d. noise.
Later, in the same setting, Zhang (2006) suggested a more involved Multi-Scale Realized
Volatility (MSRV) estimator with an improved convergence rate of N/4, which was shown
by Gloter and Jacod (2001) to be the optimal rate for this problem. More recently, both
TSRV and MSRV have been modified by Ait-Sahalia et al. (2011) to be robust to serially
dependent noise. Another class of estimators is based on weighting autocovariances and
realized variances. The first estimator of this type was introduced by Zhou (1996) and later
extended by Hansen and Lunde (2006) to accommodate stochastic volatility and serially
dependent noise. Although unbiased, these estimators are inconsistent. Barndorff-Nielsen
et al. (2008) introduced realized kernels and demonstrated that for certain choices of weight
functions their estimators achieve the optimal convergence rate and can be asymptotically
equivalent or even more efficient than TSRV and MSRV. However, these type of estimators
involve choices of tuning parameters, such as the number of subsamples to average over or
the bandwidth in the case of realized kernels.

The parametric approach, namely, the maximum likelihood estimator (MLE) in this
setting has enjoyed less attention, but important contributions have been made recently.
The simulation studies of Gatheral and Oomen (2010) and Ait-Sahalia and Yu (2009) have
shown that the MLE estimator introduced in Ait-Sahalia et al. (2005) in the constant
volatility setting performs well when applied to data generated from stochastic volatility
models. In a recent paper Xiu (2010) has formalized the parametric approach by showing
that, when viewed as a quasi-estimator that misspecifies spot volatility to be constant, the

MLE of Ait-Sahalia et al. (2005) achieves consistency at the optimal rate and has a mixed



144

normal asymptotic distribution. Furthermore, he established that the quasi-maximum
likelihood (QML) estimator is asymptotically equivalent to the optimal realized kernel with
an implicitly specified bandwidth, and performs better than alternative realized kernels in
finite samples.

While Xiu (2010) has shown that the time domain quasi-maximum likelihood (TDQML)
estimator works well in the case of the i.i.d. microstructure noise, the likelihood function
and the asypmtotic properties of the estimator become difficult to analyze once serially
dependent noise is considered. Even considering the case with i.i.d. noise requires a cum-
bersome change of variables to represent the returns as an MA(1) process in order to both
obtain theoretical results and perform the computations in practice. Xiu (2010) made
a heuristic argument for combining subsampling with the QML estimator assuming i.i.d.
noise when a finite order moving average (MA) noise process is suspected. However, this
approach does not allow for extension to autoregressive (AR) or autoregressive moving av-
erage (ARMA) noise specifications, which may be empirically relevant, as argued, among
others, by Engle and Sun (2007) and Ait-Sahalia et al. (2011) . Furthermore, it is not clear
whether this time domain estimator can be extended to accommodate dependence between
the noise and the efficient price process. This motivates us to tackle this problem from the
frequency domain perspective, using the quasi-maximum likelihood estimation procedure
that was first proposed by Whittle (1951). Intuitively, the desirable properties of the time
domain estimator should be preserved by its frequency domain version as well. In addition,
it should be more tractable analytically, allowing for more flexibility in specifying the time
series properties of the noise process, as well as afford a potential possibility to incorporate
endogenous noise by including a cross-spectrum term into the quasi-likelihood.

Although the literature on volatility estimation is vast, relatively few papers consid-
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ered the problem from the frequency domain perspective. Malliavin and Mancino (2002)
introduced the Fourier estimator, which is based on the truncated Dirichlet kernel. Man-
cino and Sanfelici (2008) developed a variant of this estimator using the Fejér kernel, and
Malliavin and Mancino (2009) extended it to the multivariate setting and provided the
optimal number of Fourier coefficients to minimize the mean squared error (MSE) of the
estimator. However, these estimators are rarely used in the literature and Gatheral and
Oomen (2010) found that they are dominated in finite samples by the time domain QML
and realized kernel estimators. The work closest to the current chapter is the article by
Olhede et al. (2009), who use the type of FDQML considered in this chapter in order to
compute weights for their shrinkage estimator of the integrated volatility that takes the
form of the sum of weighted periodograms of contaminated log returns.

We conduct our analysis under the same assumption on the log price process as in
Xiu (2010), namely that it follows a Brownian motion with stochastic volatility that is a
positive and locally bounded Brownian semimartingale. This specification of the stochastic
volatility is quite general and encompasses most continuous time financial models (e.g., see
Jacod (2008), hypothesis (L — s)). We also follow Xiu (2010) in omitting the drift term in
our specification in order to simplify the algebra as he has argued that the effects of the
drift are asymptotically negligible. The data is assumed to be equally spaced in time and
sampled at a very high frequency. The asymptotic results are thus considered within the
infill asymptotics framework where the number of observations within a fixed time interval,
e.g., one day, goes to infinity.

There are two conceptual complications for FDQML estimation that arise in this frame-
work. First, as the volatility of the log return process is stochastic, it is nonstationary and

thus its spectral density in the traditional sense is not defined. This presents a problem,
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because the Whittle likelihood that is maximized to obtain FDQML estimates requires
specification of the spectral density of the underlying data generating process. Second, the
integrated volatility that we are trying to estimate is a random object itself. We suggest to
deal with the first issue by replacing the spectral density of the log returns by the variance
of their discrete Fourier transform. The second issue can be circumvented by using the
concept of stable convergence, which is used extensively in the finance literature, to take
expectations and derive the asymptotic distribution conditional on the realization of the
integrated volatility on a given day.

We begin by considering the case without microstructure noise present. In this case,
the FDQML estimator reduces to the well known realized variance (RV) estimator, whose
properties were studied, among others, by Barndorff-Nielsen and Shephard (2002). This is
a very intuitive result, as RV is known to be consistent and efficient in this case. However,
it was demonstrated by Zhang et al. (2005) that it consistently estimates the variance
of the noise instead of IV when i.i.d. microstructure noise is present, a problem that
motivated the search for alternative estimators. We proceed to include the i.i.d. noise into
our specification, which amounts to adding a term corresponding to the spectral density
of the first differenced noise into the Whittle likelihood. The closed form solution in this
case is not available and hence the maximization is done numerically. In this case, the
simulation results suggest that the asymptotic properties of the estimator are the same
as in Xiu (2010). Finally, we suggest a more general estimation approach that admits
microstructure noise that follows a linear stationary process. Berk (1974) has shown that
the spectral density of a linear process can be consistently estimated by fitting a finite
order AR model, with the order of the approximation growing with sample size, while

Shibata (1981) suggested that using the Akaike’s (1973) information criterion (AIC) for lag
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selection in such a procedure is asymptotically efficient. We therefore consider estimating
integrated volatility by FDQML while specifying the spectrum of the noise as that of an
AR process, with the order chosen using AIC. We illustrate the application of the method
via simulation, by considering two empirically relevant microstructure noise specifications
given by the AR(1) and ARMA(1,1) processes. Our simulations show that the proposed
FDQML performs adequately well, while the TDQML estimator for these processes is very
difficult to specify and may not be feasible in practice.

The rest of this chapter is organized as follows. Section 3.2 introduces the high fre-
quency data setting that we are going to work with. Section 3.3 puts forward the FDQML
estimator, whose conjectured asymptotic properties are discussed in Section 3.4. Section

3.5 presents the findings of the simulation study, and, finally, Section 3.6 concludes.

3.2 Setup

Throughout the chapter, we work with the following setup. The latent efficient log price
process is given by

dXt = Utth,

where X = 0, W} is a Brownian motion, and the stochastic volatility process o, is assumed
to be a positive and locally bounded Brownian semimartingale. This assumption on o; is
quite generai, allowing for almost any existing continuous time stochastic volatility model
(see Hypothesis (L — s) in Jacod (2008) for more details). The object of estimation, given
by

T

WVor = /det,
0

is the integrated volatility of the above process over some fixed interval [0, T}, which can

be thought of as a trading day for most empirical applications. Here we assume that the
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observed log prices are regularly spaced with N + 1 observations per day, and indexed by
7. = kA, kK = 0,1,2..., N. The observations lie within the interval [0,T], so T = NA.
Since T is assumed to be fixed, the asymptotics are considered with N — co and A — 0
simultaneously, which is a standard framework in the literature. To shorten notation,
denote the log return between periods 7; and 7;_; by Y;.

When noise is present, the econometrician observes the contaminated process

~

XT.- = XT.‘ + Ur,',

where {Uy, } is the microstructure noise process independent of {X;}. In general, {U,,} can

be assumed to be a stationary ARMA(P,Q) process
A(L)U,, = B(L)e,,

P i ,
where L denotes the lag operator, A(L) = (1 ~ Y ¢xL*), B(L) = (1 + 5_ n;L7), and &,
k=1 i=1

is assumed to be i.i.d. with mean zero and variance a?.

3.3 FDQML estimator

Let the Fourier frequencies be denoted by \; = 27j/N, j = 1,2,..,N — 1). Let wy ()

denote the discrete Fourier transforms given by

N
1
wy(A;) = — Yiexp(—iXik), j=1,2,...N —1.
( J) \/ﬁ l; k p( ¥ ) J
Since the volatility of the log price increment process is stochastic, it is not second order

stationary and its spectral density is not defined in the traditional sense. Instead, we will

work with the covariance of its discrete Fourier transform defined by

Fx(Aj, k) = E(wx (Aj)wx (Ae)*) = E(wx (X)) E(wx (Me)*),
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where the asterisks denote conjugate transpose, and we will denote the variance (i.e., when
Jj = k) simply by fx(A;) to cut down on notation. The microstructure noise process
is stationary by assumption, so we can directly compute the spectral density of its first

difference as
2 a2 | Blexp(=iAy))*
| A(exp(—iX;))[?

fu(A;) = [1 — exp(=iA;))|

Since V(o 1) is a random quantity itself, stable convergence arguments are used for
analysis. Hence, in the rest of the chapter, all expectations are taken conditional on a

particular realization of I'V(g 1). Using this, we obtain

N

fx(A5) E(wx(Mj)wx (X)) = 'IlgE (Z(ka - XTk—x)z) =

k=1
1 ’ 1 ’
0 0

Hence, the contribution of each frequency to the integrated volatility is approximately the

same. This resemblance to the spectral properties of white noise motivates us to consider
FDQML estimation of IV(g 1) by purposely misspecifying the spectral density of the latent
log return as if its volatility were constant. In order to remove dependence on N in the

estimated parameter, we define
T
1
32 = —]-1 / 0'? dt
0

to be the parameter of interest, which implies fx(};) = 72A.
Following Whittle (1951) and using (fx(A;) + fu(X;)) as a proxy for the spectral

density of the contaminated log returns, the Whittle likelihood for our problem is given,
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up to a constant multiplication, by

= Iy()))

]z; log(fx (A;,0) + fu(};,0)) + (fx(Xj,0)+ fu(r;,60))’

where 6 is the vector of estimated parameters ( @2 , a? and any additional AR or MA
coefficients of the noise process), and Iy(\;) = wy(Aj)wy(A;)* is the periodogram. The
estimates § are obtained by minimizing L(@). Next, we describe several empirically rele-
vant microstructure noise specifications and discuss statistical properties of the FDQML

estimator in each case.

3.4 Statistical properties of FDQML

3.4.1 Baseline case: no noise

First, it instructive to consider the simplest case where the microstructure noise is absent,

i.e., A(L) = B(L) =1 and a? = 0. The Whittle likelihood in this case is given by

N-1

- Iy ();)
_ 2 Y \A;
_jz:llog(a A) + —A

with 8 = 2. Taking first order condition and setting it equal to zero yields the estimator

Ql

UAZHQ)

Using the fact that the sum of periodograms across the Fourier frequencies is equal to the

sum of squared returns (see p. 332 in Brockwell and Davis (2006)), we can write

which coincides with the traditional realized variance (RV) estimator. This is not entirely

surprising, as Xiu (2010) obtained RV as a time domain QML estimator in the absence of
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noise as well. It is well known that RV is both consistent and efficient in the absence of
noise. Hence, there are no gains or losses compared to the standard estimator associated

with using FDQML in the absence of noise.

3.4.2 1i.i.d. microstructure noise

We next consider a very popular case in the literature where microstructure noise is i.i.d.

(0,a?). The log returns now become

Yi= X, - XTi—l =Xn —Xr, + UTi - UT:'—:*

k]

Ti
and have an MA(1) structure with variance of Y; given by [ o2dt+2a? and the first order

Ti—1

autocovariance equal to (—a?). The spectral density of the first differenced noise is simply
fu(Aj) = a1 - exp(—i/\j)|2 = 2a%(1 — cos();)).

The Whittle likelihood in this case becomes

N-1
L) = Z log(@2A + 2a%(1 — cos();))) +
j=1

Iy (A5)
(72A + 2a%(1 — cos();)))’

(3.1)

with 8 = (2, a®)’. There are no closed form expressions for 5, so the maximization has to be
performed numerically. Given that FDQML and TDQML are based on the same principle,
and the quasi-likelihood (3.1) is the frequency domain approximation to the time domain
Gaussian quasi-likelihood used in Xiu (2010), we conjecture that the two estimators share
the same asymptotic properties in this case. These are summarized in Conjectures 1 and

2 below.

Conjecture 3.1. Given the log price process defined in Section 3.2 and U,, that is i.i.d.

- . T
(0, a?), the FDQML estimator 6 = (‘0'2,62)’ satisfies: & — * [ oldt Hoanda®-a2 B0
0
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Conjecture 3.2. Given the log price process defined in Section 8.2 and U,, that is i.i.d.
(0,a?), the asymptotic distribution of the FDQML estimator 6 = (52,82 is given by

N1/4 5 - —-Tl fazdt £x
0 t
]\71/2 (a2 - a2)

1/2 + ° T2 0
0 2a* + cumy[U]

where <3 denotes stable convergence in d(X), cumy[U] denotes the fourth order cumulant

of the noise process, and M N denotes mized normal distribution.

Unfortunately, the asymptotic distribution depends on the integrated quarticity, which
is not straightforward to estimate in this setting. One feasible solution is to use the consis-
tent preaveraging estimator of the integrated quarticity as in Jacod et al. (2009) in order

to obtain confidence intervals based on the limiting distribution above.
3.4.3 Microstructure noise as a stationary linear process

Several authors have argued that the assumption of i.i.d. microstructure noise is overly
simplistic. Hansen and Lunde (2006), Ait-Sahalia et al. (2011) and Engle and Sun (2007),
among others, have concluded, based on both theoretical and empirical evidence, that mi-
crostructure noise demonstrates serial dependence and is likely correlated with the efficient
price process. The above papers put forward different specifications for the independent
noise component, based on empirical evidence from assets with different characteristics,
that include MA, AR, and ARMA processes. It is therefore desirable for the practitioner
to use an estimator that is agnostic to the underlying microstructure noise process.

Shibata (1981) has shown that, under some conditions, fitting an AR model with the
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order selected using AIC produces an asymptotically optimal estimate of the spectral den-
sity of a stationary linear process representable as AR(0co). We suggest to incorporate a
similar idea to obtain an FDQML estimation procedure that allows for the microstructure
noise to follow an arbitrary stationary linear process. Specifically, the estimator solves
N-1

min |2 { D log(7°A + 2a%(1 — cos(};))) +

?2$02|[¢k)fvp

Iy ();)
(@A + fu(X)))

+2(P+2){,
=1

where fy(A;) is given by

2a%(1 — cos()))

Ju(h) = s 5.
]1 - £ oulerp(=ix)*

We conjecture that such an estimator should retain the desirable properties (consistency
and asymptotic mixed normality), while allowing for a broad family of the underlying noise

processes. The next section investigates these conjectures via simulations.

3.5 Simulation study

In this section we conduct Monte Carlo simulations to evaluate the performance of the
FDQML estimator in the various settings described in the previous section. We generate
samples of one day length, so that, in annual units, T = 1/252. The true data generating
process for stochastic volatility follows the Heston (1993) model with the Cox-Ingersoll-Ross

(CIR) volatility process (see Cox et al. (1985)):

ng = O'tqu

dat2 = K(v- of)dt + sodWoy,



154

where W;; and Wy, are independent Brownian motions. The parameters of the model are
chosen to be empirically relevant and are based on a similar simulation setup in Ait-Sahalia
and Yu (2009). Specifically, we choose v = 0.1 , which in this model is the unconditional
mean of o?. The mean reversion parameter  is set to 5, the volatility of volatility s is
set to 0.5. The initial value 02 is drawn from the CIR stationary distribution, which is
Gamma(2xkv/s?, s?/2k). The total number of simulated samples is 10,000.

First, we consider the case where the price process is contaminated by the i.i.d. Gaussian
noise component with the standard deviation (a) of 0.1%. We report the results for both
FDQML and TDQML estimators in order to ascertain that their asymptotic properties are
the same. Table 3.1 contains the summary statistics for the bias (55 - & fOT atzdt) of the
QML estimators at sampling frequencies ranging from 1 second to 3 minutes, where the

latter term is evaluated using the discrete integral approximation

We can see that the two estimators produce very similar results, although FDQML still has
a small bias even at the highest sampling frequency, whereas TDQML is unbiased. However,
the bias is still negligible as it corresponds to about 0.5% of the mean of the integrated
volatilities in this study. Standard deviations and root mean square errors (RMSE) are very
similar, with TDQML having a 1-2% edge across all sampling frequencies. Figure 3.1 plots
the distribution of the bias of the FDQML integrated volatility estimates, standardized
using the variance expression in Conjecture 3.2, against the standard normal distribution.
We see that it gets very close to normal as the sampling frequency increases. It can be
seen from Figure 3. that the distribution of standardized estimates of the noise variance

converges to normal much faster, as implied by theory. We do not show the corresponding
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distributions for TDQML as they are virtually identical and would not be distinguishable
on the graphs. Overall, the results provide support for Conjectures 3.1 and 3.2, namely,
that in the case of i.i.d. microstructure noise the FDQML estimator shares the same
asymptotic properties with the TDQML of Xiu (2010).

Second, we specify the microstructure noise as an AR(1) process with the coefficient
of —0.7, keeping the standard deviation of the shock at 0.1%. This simulation design is
motivated by the empirical findings of Ait-Sahalia et al. (2011), who estimate that log
prices of some highly liquid stocks like Microsoft or Intel are characterized by negative AR
noise. The results are reported in Table 3.2. We do not include the results for TDQML,
as it is very difficult to specify the criterion function for this case, while the misspecified
TDQML assuming i.i.d. noise performs very poorly. We observe that the bias increases
dramatically for lower sampling frequencies (about 6% of the mean value of integrated
volatility) compared to the i.i.d. case, but decreases substantially as the interval between
observations shrinks , down to about 0.7% of the average true value. The RMSE decreases
with the increase in the sample size, in line with the results observed for the i.i.d. noise
case. The distribution of the integrated volatility estimate appears to follow a mixture of
normals. However, standardizing the bias via a naive replacement of a? in the distribution
in Conjecture 3.2 by the variance of the AR process confirms that the result derived under
the i.i.d. noise assumption does not carry over to the model under consideration. The
estimates of both the autoregressive coefficient and the variance of the shock converge
fast to a normal distribution, similarly to the case with i.i.d. noise. Overall, we see that
FDQML performs reasonably well under this simulation design, while using TDQML is not
feasible due to analytical intractability.

Finally, we follow Engle and Sun (2007) by letting the noise component follow an
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ARMAC(1,1) process, with the AR and MA coefficients of 0.5 and 0.1 respectively and the
same shock variance as in the previous case. We estimate integrated volatility by approx-
imating the spectral density of the first differenced noise with that of a first differenced
AR process with the order chosen by AIC. Table 3.3 contains the simulation results. The
resulting order of the AR approximation chosen for all sampling frequencies was 1, perhaps
due to the fact that the MA coefficient of the noise process is relatively small. Overall, the
bias and RMSE performance is very similar to the case with AR(1) noise, with a slight edge
in 1 second and 5 second frequencies. This demonstrates that, even when approximating
an unknown stationary linear noise process with a finite order autoregression, the FDQML

estimator delivers satisfactory results.

3.6 Conclusion

In this chapter we have suggested to use the FDQML estimator for integrated volatility es-
timation in the presence of market microstructure noise. The proposed estimator coincides
with RV in the absence of noise, and we conjecture that it possesses the same asymptotic
properties as its time domain counterpart studied in Xiu (2010) when i.i.d. noise is consid-
ered. Furthermore, we propose extending our estimator to accommodate microstructure
noise that follows a stationary linear process by approximating its spectral density with an
autoregression of finite order chosen by AIC. The simulation study appears to confirm our
former conjecture and shows that the latter estimation procedure performs relatively well.

The above findings pave the road to deriving relevant theoretical results characterizing
asymptotic properties of the FDQML estimator under the considered assumptions on the
microstructure noise. More importantly, the frequency domain approach appears well

suited for tackling the issue of endogenous noise. Such a modification will amount to
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including an extra term in the likelihood that corresponds to the cross-spectrum of the
latent price process and noise. Another important challenge is that of consistent estimation
of the integrated quarticity within the FDQML framework for construction of confidence

intervals.
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3.7 Supplementary materials appendix 3

Table 3.1: Summary statistics for the bias of IV estimates under i.i.d.
noise

1 sec 5 sec 10 sec 20 sec 30 sec 1 min 3min

FDQML
Mean -0.0509 -0.0507 -0.0478 -0.0474 -0.0493 -0.0436 -0.0460
Std. Dev. 0.5493 0.8317 1.0055 1.2488 14296 1.8106 2.6853
RMSE 0.5516 0.8332 1.0066 1.2496 14303 1.8111 2.6856

TDQML
Mean 0.0001 -0.0003 0.0020 0.0029 0.0002 0.0068 0.0014
Std. Dev. 0.5431 0.8265 0.9999 1.2403 1.4177 1.7955  2.6537
RMSE 0.5431 0.8264 0.9999 1.2402 1.4176 1.7954 2.6536

Note. Statistics computed for the bias of the indicated integrated volatility estimates
and multiplied by 100.

Table 3.2: Summary statistics for the bias of IV estimates under AR(1)
noise

1 sec 5sec 10sec 20sec 30 sec 1 min 3min

Mean 0.0717 0.0693 0.0379 0.0152 -0.0012 -0.1269  -0.6064
Std. Dev. 0.4386 0.9620 1.1109 1.4251 1.6585 22276 3.7207
RMSE  0.4444 09644 1.1115 1.4251 1.6585 22311 3.7696

Note. Statistics computed for the bias of the FDQML integrated volatility estimates
and multiplied by 100.



Table 3.3: Summary statistics
ARMA(1,1) noise
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for the bias of IV estimates under

1 sec 5sec 10 sec

20 sec 30 sec 1 min 3min

Mean 0.0561 0.0409 0.0379
Std. Dev. 0.3981 0.8928 1.1109
RMSE 04020 0.8937 1.1115

0.0152 -0.0012 -0.1304  -1.2679
1.4251 1.6585 2.2202 3.9699
1.4251 1.6585 2.2239 4.1672

Note. Statistics computed for the bias of the FDQML integrated volatility estimates

and multiplied by 100.
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