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ABSTRACT 

In this dissertation, we use frequency domain methods to address issues related to 

identification and estimation in linearized dynamic stochastic general equilibrium (DSGE) 

and stochastic volatility models. 

The first chapter provides a necessary and sufficient condition for the local identifica

tion of the structural parameters based on the (first and) second order properties of the 

linearized DSGE model. The condition is flexible and simple to verify. It is extended 

to study identification through a subset of frequencies, partial identification, conditional 

identification, and constrained identification. When lack of identification is detected, the 

method can be used to trace out nonidentification curves. For estimation in nonsingular 

systems, we consider a frequency domain quasi-maximum likelihood (FDQML) estimator 

and present its asymptotic properties, which can be different from existing results due to the 

structure of the DSGE model. Finally, we discuss a quasi-Bayesian procedure for estima

tion and inference that can incorporate relevant prior distributions and is computationally 

attractive. 

The second chapter analyzes a popular medium scale DSGE model of Smets and 

Wouters (2007) using the framework developed in the previous chapter. For identification, 
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in addition to checking parameter identifiability, we derive the corresponding nonidentifi-

cation curve. For estimation and inference, we contrast estimates obtained using the full 

spectrum with those using only the business cycle frequencies to find notably different 

parameter values and impulse response functions. A further comparison between the non-

parametrically estimated and model implied spectra suggests that the business cycle based 

method delivers better estimates of the features that the model is intended to capture. 

The final chapter proposes an FDQML estimator of the integrated volatility of financial 

assets in the noisy high frequency data setting. The approach allows for the microstruc-

ture noise to be a stationary linear process, and is analytically tractable. In practice, we 

approximate the noise process by a finite order autoregression, where the order is chosen 

using the Akaike information criterion (AIC). The simulation study shows that the finite 

sample performance of the estimator is very similar to its time domain analogue in the case 

of i.i.d. noise, and is substantially better when more sophisticated noise specifications are 

considered. 

v 
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1 

Chapter 1 

Identification and Frequency Domain QML 

Estimation of Linearized DSGE Models (with 

Zhongjun Qu) 

1.1 Introduct ion 

The formal quantitative analysis of dynamic stochastic general equilibrium (DSGE) models 

has become an important subject of modern macroeconomics. It is typically conducted in 

the time domain using a state space representation with the aid of Kalman or particle 

filtering, see An and Schorfheide (2007) and Fernandez-Villaverde (2010) for reviews of 

related literature. This chapter considers issues related to identification, inference, and 

computation from a spectral domain perspective. The goal is to present a unified framework 

for identifying and estimating linearized DSGE models based on the mean and the spectrum 

of the underlying process. 

The identification of DSGE models is important for both calibration and formal sta

tistical analysis, although the relevant literature is relatively sparse. Substantial progress 

has been made recently, notably by Iskrev (2010) and Komunjer and Ng (2011), and by 

Canova and Sala (2009), Consolo, Favero and Paccagnini (2009) and Fukag, Waggoner and 

Zha (2007). Komunjer and Ng (2011) documented that an inherent difficulty in the iden

tification analysis is that the reduced form parameters (i.e., the ones appearing directly in 

the solution of the model) are in general not identifiable, thus the traditional approach of 
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identifying structural parameters from the reduced form breaks down. Also, the solution 

system of a DSGE model can be singular (i.e., when the number of observed endogenous 

variables is greater than the number of exogenous shocks), which constitutes an additional 

layer of conceptual difficulty. They provided necessary and sufficient conditions for the local 

identification of the dynamic parameters by exploiting the dynamic structure of the model. 

Our identification analysis is distinctly different from theirs and other related work in the 

literature. Specifically, we work in the frequency domain, treating the spectral density as 

an infinite dimensional mapping, and delivering simple identification conditions applicable 

to both singular and nonsingular DSGE systems without relying on a particular (say, the 

minimal state) representation. 

We first focus on the identification of the dynamic parameters from the spectrum. 

We treat the elements of the spectral density matrix as mappings from the structural 

parameter space to complex valued functions defined over [—7r, 7r] in a Banach space. Then 

the parameters axe locally identified if and only if the overall mapping is locally injective 

(that is, if any local change in parameter values leads to a different image). This leads to a 

necessary and sufficient rank condition for local identification, which depends on the first 

order derivative of the spectral density matrix with respect to the structural parameters of 

interest. Depending on the model at hand, the resulting condition can be easily evaluated 

analytically or numerically. The result is general because the assumptions mainly involve 

the uniqueness of the DSGE solution (i.e., determinacy) and the continuity and smoothness 

of the spectral density matrix. Note that although the identification condition is formulated 

in the spectral domain, it has a time domain interpretation as well. Specifically, under some 

regularity condition that ensures a one-to-one mapping between the spectral density matrix 

and the autocovariance functions, the condition is also necessary and sufficient for local 
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identification through the complete set of autocovariances. Next, we incorporate the steady 

state parameters into the analysis and study identification through both the first and second 

order properties of the process. The result we obtain is analogous to the previous case with 

the addition of an extra term depending on the steady state parameters. When interpreted 

in the time domain, this condition is necessary and sufficient for local identification through 

the mean and the complete set of autocovariances. 

We discuss various extensions of these two identification results, (i) We study identifi

cation through a subset of frequencies. This is relevant for situations where it is desirable to 

construct estimators based on a subset of frequencies to minimize the effect of unmodeled 

seasonality or measurement errors, (ii) We consider partial identification, i.e., identifying a 

subset of parameters without making identification statements about the rest, (iii) We give 

a necessary and sufficient condition for conditional identification, i.e., the identification of a 

subset of parameters while holding the values of the other parameters fixed at some known 

value, (iv) We also study identification under general nonlinear parameter constraints. For 

example, this allows us to constrain some monetary shocks to have no long run effect on 

real variables, which can be easily formulated as a set of restrictions on the spectral density 

matrix at frequency zero. The second and third extensions are motivated by Komunjer and 

Ng (2011), although the assumptions they used are different. The first extension is new. It 

provides the identification foundation for inference based on a subset of frequencies studied 

later in the chapter. 

Furthermore, when lack of identification is detected, our method can be used to trace 

out parameter values that yield processes with identical (first and) second order properties. 

We summarize the path of these values via nonidentification curves and provide a simple 

algorithm to obtain them. It appears that our work is the first to deliver such curves. They 
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can serve three purposes. First, because they showcase which parameters are unidentified 

and their equivalent parameter values, they are useful for building a DSGE model. Sec

ond, because they characterize the size of the nonidentified local neighborhood, they are 

useful for inference. In particular, if the neighborhood is very small, then the lack of local 

identification arguably may not be a great threat to inference that assumes identification 

nonetheless; otherwise, serious thoughts should be given. Third, the curves can be embed

ded into a procedure to ensure the robustness of the identification analysis. This point is 

elaborated using an example in Section 1.3.2. 

We illustrate the proposed method using a model considered by An and Schorfheide 

(2007) and document a serious concern about the identification of the parameters in the 

Taylor rule equation. The result shows that when varying parameters in this equation 

along a certain path, the (mean and) spectrum of the observables stay the same; thus it is 

impossible to uniquely pin down the parameter values even with an infinite sample. The 

values on the curve suggest that in this model it is impossible to distinguish between a 

hawkish rule (a long run policy coefficient of 1.57 on inflation and 0.00 on output, resulting 

in respective Taylor rule weights of 0.41 and 0.00) and a more dovish rule (0.99 on inflation 

and 1.00 on output, with Taylor rule weights of 0.20 on each). To our knowledge, the 

current work is the first to document such an identification feature about the Taylor rule 

parameters. 

As will become clear, our results, as well as their proofs, are closely connected to 

Rothenberg (1971), who considered identification of parametric econometric models from 

the density functions and provided rank conditions based on the information matrix. How

ever, there exists an important difference. Namely, in our analysis, the spectral density 

is a complex valued matrix that may be singular. Under singularity, the conventional in
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formation matrix does not exist. This generates some conceptual and technical difficulties 

that do not arise in Rothenberg (1971). Consequently, our condition is based on a criterion 

function different from the information matrix. We further show that when restricting 

to the nonsingular special case, our condition is equivalent to evaluating the rank of the 

information matrix. Therefore, the condition of Rothenberg (1971) still applies, albeit only 

to nonsingular models. 

An identification result is useful only if it corresponds to an estimator. This motivates 

the consideration of the frequency domain quasi-maximum likelihood (FDQML) estimation 

in this chapter. The FDQML approach was first proposed by Whittle (1951). Its statistical 

properties have been studied by, among others, Dunsmuir and Hannan (1976), Dunsmuir 

(1979) and Hosoya and Taniguchi (1982) in the statistics literature. In the economics 

literature, Hansen and Sargent (1993) derived the FDQML as an approximation to the 

time domain Gaussian quasi-maximum likelihood (QML) and used it to understand the 

effect of seasonal adjustment in estimating rational expectations models. Diebold, Ohanian 

and Berkowitz (1998) laid out a general framework for estimation and model diagnostics 

based on a full second order comparison of the model and data dynamics. Their criterion 

function includes FDQML as a special case. 

The contribution of this chapter in the area of FDQML estimation is threefold. First, 

we formally establish the link between the identification result and the property of the 

estimator by showing that the rank condition derived is necessary and sufficient for the 

estimator to be asymptotically locally unique. Therefore, the identification result is em

pirically relevant. Second, we derive the limiting distribution of the estimator under mild 

conditions. Finally, we discuss a computationally attractive method to obtain the es

timates, following the approach of Chernozhukov and Hong (2003). In addition to the 
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computational advantage, it allows us to impose priors on the parameters, thus having a 

(quasi) Bayesian interpretation. Note that the above results allow for estimation using only 

a subset of frequencies. 

In addition to the above mentioned papers, there exists a small but growing literature 

that exploits the merits of estimation and diagnosis of econometric models in the spectral 

domain. Engle (1974) considered band spectrum regressions and demonstrated their value 

in dealing with errors in variables and seasonality. Altug (1989) applied FDQML to es

timate models with additive measurement errors. Watson (1993) suggested plotting the 

model and data spectra as one of the most informative diagnostics. Berkowitz (2001) con

sidered the estimation of rational expectation models based on the spectral properties of 

the Euler residuals. Also, see Christiano, Eichenbaum and Marshall (1991) and Christiano 

and Vigfusson (2003) for applications of FDQML to various problems. We believe that the 

identification, estimation, and computational results obtained in this chapter can be useful 

to further develop the literature in this field and to facilitate estimation and comparison of 

more sophisticated models. 

The chapter is organized as follows. The structure of the DSGE solution is discussed 

in Section 1.2. Section 1.3 considers the local identification of the structural parameters 

together with an algorithm to trace out nonidentification curves and an illustrative ex

ample. The FDQML estimator and its asymptotic properties are studied in Section 1.4. 

The discussion on interpretation of the estimates in misspecified models is also included. 

Section 1.5 presents a quasi-Bayesian approach for computation and inference. Section 1.6 

concludes. All proofs are contained in the mathematical appendix 1. Section 1.8 contains 

relevant tables and figures. 

The following notation is used. \ z \  is the modulus of z ;  the imaginary unit is denoted 
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by i. X* stands for the conjugate transpose of a complex valued matrix X. For a random 

vector xt, xta denotes its a-th element. For a matrix A, Aab stands for its (a,6)-th entry. 

If fe € Rk is a differentiate function of 0 € Rp, then df$0/d6' is a k x p matrix of partial 

derivatives evaluated at 6q. >p" and "—•<*" signify convergence in probability and in 

distribution. And Op(-) and op(-) are the usual symbols for stochastic orders of magnitude. 

1.2 The model 

Suppose a discrete time DSGE model has been solved and log linearized around the steady 

state. Assume the solution is unique. Let Yt
d(0) be the log deviations of endogenous 

variables from their steady states with 0 being a finite dimensional structural parameter 

vector containing the dynamic parameters. Yt
d(0) can be represented in various ways, and 

our method does not rely on a particular representation. To maintain generality, we only 

assume that they are representable as 

where h j (9 )  (j  — 0, ...,oo) are real valued matrices of constants and {et} is a white noise 

process of unobserved structural shocks. The dimensions of the relevant variables and 

parameters are 

Y t
d (9 )  : ny x 1, e t  :  n t  x 1, h j (0 )  :  ny  x n e ,  0  :  q  x  1. 

Let H(L\  0 )  denote the matrix of lagged polynomials, i.e., 

OO 

(1.1) 
j=0 

OO 

(1.2)  
j=o 
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Then, Yt
d(6) can be written concisely as 

Yt
d(0) = H(L;0)et. (1.3) 

Remark 1.1. We work directly with the vector moving average representation (1.3) without 

assuming invertibility, i.e., et = YlJLo9jW for some gj{6). Invertibility is restric

tive because it requires ny > ne. Consequently, we allow for both ny > ne and ny < n(. 

Note that the system is singular if ny > ne. 

Assumption 1.1. {et} satisfies E(tt) = 0, E(ete't) — 11(0) with 1,(0) being a finite nt x nt 

matrix for all 0, and E(ete's) — 0 for all t ^ s. ^JLQtr(hj(0)T,(0)hj(0)') < oo. 

Assumption 1.1, along with (1.1), implies that Yt
d(8) is covariance stationary and has 

a spectral density matrix fe(ui) that can be written as 

Mu)  =  ±-H(exp( - iu jy ,0 )X(0)H(eM- i"y ,0Y ,  (1-4) 
Z7r 

where X* denotes the conjugate transpose of a generic complex matrix X. To illustrate 

the flexibility of the above framework, we consider the following two examples. 

Example 1.1. Consider a linear rational expectations system as in Sims (2002) (in this 

example and the next, we omit the dependence of the parameters on 0 to simplify notation), 

F qS i  =TiS t~ \  +  VZt+ Tlr ) t ,  (1-5) 

where St is a vector of model variables that includes the endogenous variables and the 

conditional expectation terms, Zt is an exogenously evolving, possibly serially correlated, 

random disturbance, and rjt is an expectational error. Models with more lags or with lagged 

expectations can be accommodated by expanding the St vector accordingly. Then, under 

some conditions (Sims (2002, p. 12)), the system can be represented as 

OO 

St  =  &iS t - i  + ©0 z t  + ©5^©^ _ 1 ©2^t^+j ,  (1 . 6 )  

j=l 

where ©o,0i,©s,©/, and Qz ore functions of To, Ti, 'J', and II. Assuming Zt follows a 

vec tor  l inear  process  ( fo r  example ,  Z t +\  =  $Z t  + e t + j ) ,  we  then  have  S t  =  ©i5 t_ i  +  B(L)e t  

f o r  some  lag  po lynomia l  ma t r i x  B (L) ,  imp ly ing  S t  =  ( I  — ©iL)~ l B(L)e t .  
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Let A(L) be a matrix of finite order lag polynomials that specifies the observables such 

that 
Y d  = A(L)S t .  

Then we have 

Yt
d = A(L)(I - Q^L)'1 B{L)tt. 

Therefore, the spectral density ofYd is given by (1.4) with H(L; 6) = A(L)(I—&\L)~1 B(L). 

Remark 1.2. In the above example, the matrix A(L) offers substantial flexibility since it 

allows us to study identification and estimation based on a subset of variables (equations) or 

a linear transformation of them. To see this, suppose St includes two endogenous variables 

xt and wt. Then A{L) can be chosen such that Yd includes only xt but not wt, or includes 

xt — xt-i but not xt. Consequently, it is straightforward to analyze DSGE models with 

la ten t  endogenous  var iab les  s imp ly  by  ass ign ing  zeros  and  ones  to  the  en t r i e s  o f  A (L) .  We  

illustrate the specification of A{L) in Section 1.3.2 through a concrete example. Note that 

such analysis is permitted because we do not impose restrictions on the relation between ny 

and  r i f  •  

Example 1.2. Another representation used in the literature by, among others, Uhlig 

(1999), is 

kt+1 = Pkt + Qzt, 

wt - Rkt + Szt, 

%t+1 = y?zt + €t+li 

where kt is a vector of observed endogenous (state) variables whose values are known at 

time t, wt is a vector of observed endogenous (jump) variables, zt has the same definition 

as in the previous example, and P, Q, R, S, and are matrices of constants depending on 

the structural parameter 6. Let 

Then the spectral density ofYt
d is given by (1-4) with 

mL- , e )=( L ~ ' v _- R
P L ]  °  [ / -*£] -

Again, one can study identification and estimation based on a subset of equations or a linear 

combination of them by picking an appropriate A(L) and considering Yt
d = A(L)(k't,w't)' 
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instead of (1.7), which corresponds to 

L~ l  [ I  -  PL]  0 

-R I 

-l 

H(L;  9 )  =  A(L)  [ I -9L] ' 1 .  (1.8) 

As becomes clear later, if estimating the dynamic parameters is the main objective, 

then it is not necessary to specify the steady states of the DSGE solution. However, in 

some cases one may be interested in estimating the dynamic and steady state parameters 

jointly, for example, for conducting welfare analyses. Our framework permits this. First, 

recall that 9 denotes the dynamic parameter vector. Importantly, parameters that affect 

both the steady states and the log deviations are treated as dynamic, and thus are included 

in 6. Next, let a denote the parameters that affect only the steady states, which is possibly 

a null set in some DSGE models. Finally, define the augmented parameter vector 

and assume that the observables (Yt) are related to the log deviations (Yt
d(9)) and the 

The above expression acknowledges that in DSGE models the constant term /i typically 

depends on both 9 and a. In the remainder of the chapter, we examine the identification 

and estimation of 9 based on the properties of fe(oj) alone, and of 9 based jointly on /z(0) 

and fe(lj). 

1.3 Local identification of structural parameters 

We first consider the identification of 9 at some 9q and subsequently of 9 at some 9q. The 

next assumption imposes some restrictions on the parameter space. 

9  =  (9 ' ,  a ' ) '  

steady states (n (9 ) )  via 

Y t  = ix{9)  +  Y t
d {9 ) .  



www.manaraa.com

11 

Assumption 1.2. 0 € © C R9 and 0 € © C Rp+9 with © and © being compact and convex. 

Assume 6q and Oq are interior points of 6 and ©, respectively. 

Note that for identification analysis alone, we do not require the compactness and 

convexity assumptions on © and ©. However, they are needed to study the asymptotic 

properties of the parameter estimates. 

The concept for location identification is defined in the same way as in Rothenberg 

(1971, see his Definition 3). 

Definition 1.1. The dynamic parameter vector 6 is said to be locally identifiable from the 

second order properties of {Yt} at a point &o if there exists an open neighborhood of Oq in 

which /#,(ui) = fe0(u) for all ui € [—7r, i t] implies 9q — 9\ .  

The above concept is formulated in the frequency domain. However, there is an equiv

alent formulation in the time domain in terms of autocovariance functions. Specifically, 

suppose {Yt} satisfy Assumption 1 with autocovariance function r(fc) (k = 0, ±1,...) satis

fying T(k) = T(—k) and that fe{u>) is continuous in uj. Then Theorem 1" in Hannan (1970, 

p .  46 )  impl i e s  t ha t  the re  i s  a  one - to -one  mapp ing  be tween  T(k )  (k  =  0 ,  ±1 , . . . )  and  f e {u i )  

(w € [—7r, 7r]) given by 
7T 

T (k )  =  j exp( i ku j ) fg (u} )dc j .  

—tr 

Therefore, 0 is locally identifiable from fe(u>) if and only if it is locally identifiable from the 

complete set of autocovariances {T(A:)}^=_00 of Yt. 

The spectral density matrix has ny elements. Each element can be viewed as a map 

from © to complex valued functions defined over [—n, 7r] in a Banach space. Therefore, the 

parameters are locally identified at do if and only if the overall mapping is locally injective 

(i.e., any local change in parameter values will lead to a different image for some element). 

The mappings are infinite dimensional and difficult to analyze directly. However, it turns 
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out the identification can be characterized by a finite dimensional matrix. To state this 

precisely, we start with the following assumption. 

Assumption 1.3. The elements of fe(oj) are continuous in u>, and continuous and differ

entiate in 9. The elements of the derivatives dvec(fg(u))/d0' are continuous in 9 and w. 

Let 

= (1.9) 

— IT 

Assume there exists an open neighborhood of do in which G{9) has a constant rank. 

This first part of the assumption requires the spectral density to be smooth with con

tinuous first order derivatives. The second part requires 9q to be a regular point of the 

matrix G(9). These assumptions are quite mild. Note that in the definition of G(0), the 

primes denote simple transposes rather than conjugate transposes. Alternatively, we can 

also write G(9) as 

f  ( dvec ( f e (u ) ) ) \*  (dvec ( f e {w) ) \  
J { w ) { a<r ) 

— TT 

where the asterisk now denotes the conjugate transpose. 

Remark 1.3. The dimension of G(9) is always q x q and independent of ny or ne. Its 

(j, k)-th element is given by 

— 7T 

We use this representation to compute G(9)  in the application in Section 1.3.2. Lemma 

1.2 in Section 1.7 provides another representation, showing explicitly that the integrand of 

G(0), therefore G(9) itself, is real, symmetric, and positive semidefinite. This feature is 

useful for proving the subsequent theoretical results. 

Theorem 1.1. Let Assumptions 1.1-1.3 hold. Then 0 is locally identifiable from the second 

order properties of {YT} at a point 9q if and only if G(9q) is nonsingular. 

The main computational work in obtaining G(9 q) is to evaluate the first order derivatives 

and to compute the integral. This is typically straightforward using numerical methods. 
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First, divide the interval [—n, 7r] into N subintervals to obtain (N + 1) frequency indices. 

Let ws denote the s-th frequency in the partition. Then df$0(wB)/dOj can be computed 

numerically using a simple two-point method, 

where ej is a q x 1 unit vector with the j-th element equal to 1, and hj is a step size that 

can be parameter dependent. In practice, to obtain the right hand side quantity, we only 

need to solve the DSGE model twice, once using 9 = 6q and once with 6 = 6q + ejhj. After 

this is repeated for all parameters in 0, we can compute Gjk(0o) using 

Note that no simulation is needed in this process. For the model considered in Section 

1.3.2 (An and Schorfheide (2007)) the computation takes less than a minute to finish with 

N = 9999. 

Because G(8)  is real, symmetric, and positive semidefinite, its eigendecomposition al

ways exists. Therefore, the rank of G(6q) can be evaluated using an algorithm for eigenvalue 

decomposition and counting the number of nonzero eigenvalues. 

Theorem 1.1 is closely related to Theorem 1 in Rothenberg (1971), who considered 

identification in parametric models. In his case, fe(u) is replaced by the parametric den

sity function and G(6) is simply the information matrix. Since the information matrix 

describes the local curvature of the log likelihood as a function of 0, its rank naturally pro

vides a measure for identification, for lack of identification is simply the lack of sufficient 

information to distinguish between alternative structures. In our case, the result is equally 

intuitive, since the parameters are locally identified if and only if any deviation of the pa~ 

j — 1,..., iV + 1, 

d f g (u s )  d f 9 {u i s )  
d0j d0k } 
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rameters from Oq leads to different mappings for f$(u>). We now state a result that formally 

establishes the link with Rothenberg's (1971) condition. Note that under Gaussianity the 

information matrix is given by1 

T((> \  1  f  9 v e c Uo 0 (u) 'Y  ( f - i (  , r V „  f - i , . A  Ovec( fe 0 (u j ) )  
m) ~4^J 30 V*(cj) ® A» M) —W' 

— 7T 

which is defined only if the system is nonsingular. We restrict our attention to such a 

situation. 

Corollary 1.1. Let Assumptions 1.1-1.3 hold. In addition, assume fg0 (u) has full rank 

for all u> £ [—7r, 7t] . Then G(0o) and 1(0o) have the same rank. Also, for any c G Rq, 

G(9Q)C — 0 if and only if I(0Q)C — 0. 

Therefore, Rothenberg's (1971) condition applies to DSGE models, albeit only to non-

singular systems. Because G(#o) and 1(0o) share the same null space, they deliver the same 

information about nonidentification. The issue of nonidentification is further addressed in 

Section 1.3.1. 

Given the insight conveyed by Theorem 1.1, it becomes straightforward to study the 

identification of 0 based on both first and second order properties of the process. 

Definition 1.2. The parameter vector 0 is said to be locally identifiable from the first, and 

the second order properties of {Y"t} at a point 0o if there exists an open neighborhood of 0q 

in which n(0\) = fi(0o) and f$1(uj) — f$Q(w) for all u G [—7r, 7r] implies 0q = 0\. 

Assumption 1.4. The elements of n(0) are continuously differentiable with respect to 0. 

Let 

dn(0)' 3fi(0) 
dw + 

d0 30' 

Assume there exists an open neighborhood of 0o in which G(0) has a constant rank. 

Remark 1.4. G(0)  i s  a  (p  +  q)  x  (p  +  q)  matr ix .  The  f i rs t  t erm i s  a  bordered  matr ix ,  

consisting of G(0) with p rows and columns of zeros appended to it. Both terms are positive 

1Under Gaussianity, /(So) 1 is the asymptotic covariance matrix of the FDQML estimator based on the 
full spectrum, see Section 1.4, in particular Theorem 1.3 and the expression (1.18) that follows. 
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semidefinite, hence taking the sum cannot decrease the rank. Also note that the (j,k)-th 

element of G(9) is given by 

d fe{uj )  d f e (u)  \  j (  df i jey  dn(6)  

dOj  86] t 

Theorem 1.2. Let Assumptions 1.1-1.4 hold. Then 9 is locally identifiable from the first 

and second order properties of {Yt} at a point So if and only if G (9 o) is nonsingular. 

Theorems 1.1 and 1.2 can be further extended in various directions. In what follows, 

we discuss four such extensions. 

DSGE models are often designed to explain business cycle movements, not very long run 

or very short run fluctuations. At the latter frequencies, such models can be severely mis-

specified. It is therefore important to consider estimation and inference based on business 

cycle frequencies only. Such consideration may also arise due to concerns about unmodeled 

seasonality or measurement errors; see Hansen and Sargent (1993), Diebold, Ohanian and 

Berkowitz (1998), and Berkowitz (2001). We now present a result that lays the identi

fication foundation for such an analysis. Let W(ui) denote an indicator function defined 

on [—7r, 7r] that is symmetric around zero and equal to one over a finite number of closed 

intervals. Extend the definition of W(U) to U € [7r, 27r] by using W{OJ) = W(2n — OJ).2 

Define the matrices 

cm = {7^(a,)(a"ecy>,))'(9''e^(")))^ 

df j , (9) '  dn(9)  
o-w . U ̂ M(2=^3)'(2T!a)'fc' + d9 d9> 

Corollary 1.2. (Identification from a subset of frequencies) 

2This extension is needed for FDQML estimation since the objective function involves summation over 
U I J  =  2 t t / T ,  2tt(T — 1 )/T; see (1.15). 
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1. Let Assumptions 1-3 hold, but with G(0) replaced by Gw{0). Then 0 is locally iden

tifiable from the second order properties of {Ft} through the frequencies specified by 

W (u>) at a point 0q if and only if Gw {0o) is nonsingular. 

2. Let Assumptions 1-4 hold, but with G(0) replaced by Gw  {0).  Then 0 is locally identifi

able from the first and second order properties of {Yt} through the frequencies specified 

by W(ui) at a point Oq if and only if Gw{Oq) is nonsingular. 

The proof is the same as for Theorems 1.1 and 1.2, because W(ui)  is a nonnegative real 

valued function; therefore, it is omitted. Note that because the quantities 

/dvec{ f e {u) ' )  V / dvec( f e (o j ) ) \  

V 80' J V 90' J 

are positive semidefinite for any u> G [—t t , 7r], the difference G(0o) — Gw(0q) is always 

positive semidefinite. This ensures that if 0q is identified using a subset of frequencies, it 

is also identified if considering the full spectrum. The converse does not necessarily hold. 

The same statement can be made about  the relat ion between G{0q) and Gw(0q).  

The second extension concerns the identification of a subset of parameters without 

making identification statements about the rest (partial identification). Specifically, let 0s 

be a subset of parameters from 0. We say it is locally identified from the second order 

properties of {Yt} if there exists an open neighborhood of do in which fe1{uj) = /e0(a;)for 

all ui € [—7r, 7r] implies Oq = 0\. Note that, as in Rothenberg (1971, footnote p. 586), the 

def in i t ion  does  not  exc lude  there  be ing  two poin ts  sa t i s fy ing  /# , (w)  =  f e 0 (u j )  and having  0 s  

arbitrarily close in the sense of ||^g — 0\\\ / ||#o — 0\II being arbitrarily small. Analogously, 

we can define the identification of a subset of 0, say 8s, based on the first and second order 

properties. The following result is a consequence of Theorem 8 in Rothenberg (1971), which 

can be traced back to Wald (1950) and Fisher (1966). 

Corollary 1.3. (Partial identification) 
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1. Let Assumptions 1.1-1.3 hold. Then 98 is locally identifiable from the second order 

properties of {Yt} at a point 9q if and only if G(0o) and 

Ga(90)  
G(00)  

deyse' 

have the same rank. 

2. Let Assumptions 1.1-1.4 hold. Then 0s is locally identifiable from the first and second 

order properties of {Yt} at a point 9q if and only ifG(§o) ond 

Ga(90)  
G(0O)  

de'JdO' 

have the same rank. 

The proof is provided in Section 1.7. Furthermore, one may be interested in studying 

the identification of a subset of parameters while keeping the values of the others fixed at 

9q (conditional identification). The result for this extension is formally stated below. 

Corollary 1.4. (Conditional Identification). 

1. Let Assumptions 1.1-1.3 hold. Then a subvector of 9, 9s, is conditionally locally 

identifiable from the second order properties of {Yt} at a point 9q if and only if 

— 7T 

is nonsingular. 

2. Let Assumptions 1.1-1.4 hold. Then, a subvector of 9, 9s, is conditionally locally 

identifiable from the first and second order properties of {Yt} at a point 9q if and only 

if 

1  (dvec{ f 0 o (u) ' ) \ ' (dvec{ fe Q {u) ) ) \  J  ,  d^ (9 0 ) '  d^(0 Q )  
a m  = y  I—dp—j I——) d u +  as-  as -

— 7T 

is nonsingular. 

The proof is the same as for Theorems 1.1 and 1.2 because G(9q)s  and G(0q)" have the 

same structure as G(0o) and G(9q), but with derivatives taken with respect to a subset of 
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parameters. Therefore the detail is omitted. Comparison between Corollaries 1.3 and 1.4 

suggests that the latter is often practically more relevant and its result is also simpler to 

interpret; we therefore expect it to be more frequently applied in practice. 

Next, we consider identification under general constraints on the parameters. One 

potential example is that shocks to monetary variables have no long term effect on real 

variables, which can be formulated as a set of restrictions on the spectral density at fre

quency zero. 

Corollary 1.5. (Identification under general constraints) 

1. Let Assumptions 1.1-1.3 hold. Suppose 9q satisfies ip(0o)  = 0 with ~4>{9) a k x 1 

constraint vector continuously differentiable in 6. Define the Jacobian matrix \&(0) 

with the (j,l)-th element given by 

Suppose 9q is a regular point of both G(9) and $(0). Then 9 satisfying ip(9)  = 0 i s  

locally identified from the second order properties of {Yt} at a point 6q if and only if 

'  G(9 0 )  "  

. *(*o) . 

has full column rank equal to q. 

2. Let Assumptions 1.1-1.4 hold and let the other conditions stated in part 1 of this 

corollary hold with 9 replaced by 6. Then, 9 satisfying xji(9) — 0 is locally identified 

from the first and second order properties of {Yt} at a point 9q if and only if 

'  G(9 0 )  '  

. *(5o)  . 

has rank (q + p). 

Note that Corollary 1.5 can also be used to study conditional identification, because 

the latter is a special case of simple linear restrictions. However, Corollary 1.4 is simpler 

to apply, especially if the dimension of 9s is much smaller compared to that of 9. Clearly, 
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Corollaries 1.3-1.5 can be applied in conjunction with Corollary 1.2 to study identification 

through a subset of frequencies. 

We now compare the above analysis with those of Iskrev (2010) and Komunjer and Ng 

(2011). Iskrev (2010) suggested to identify the parameters from the mean and the first T 

autocovariances of the observables. Because his result (Theorem 2) assumes T is finite, the 

resulting conditions axe sufficient but not necessary. Meanwhile, the key differences between 

our work and Komunjer and Ng (2011) can be summarized along five aspects. First, the 

perspective is different. Komunjer and Ng (2011) regarded the solution of a DSGE model 

as a minimal system with miniphase. Their condition effectively exploits the implication 

of the latter two features for identification. Instead, we regard the spectrum of a DSGE 

model as an infinite dimensional mapping. The analysis studies its property under local 

perturbation of the structural parameter vector. Second, the assumption is different. We 

do not require the solution system to have minimal phase. Therefore, we permit the rank 

of the spectral density matrix to vary across frequencies. This is practically relevant. For 

example, in Smets and Wouters (2007), the rank of the spectral density is lower at frequency 

zero because the first differences of stationary variables are considered. Third, the system 

representation requirement is different. Komunjer and Ng (2011) required a minimal state 

representation, while we do not. Whatever is the state representation under which the 

model is solved (St in the GENSYS algorithm, for example), the spectral density can be 

computed and that is all that is needed. Fourth, the treatment of stochastic singularity 

is different. Komunjer and Ng (2011) gave separate results for singular and nonsingular 

systems, while our single condition applies to both. Intuitively, this follows because the 

dimension of our criterion function is independent of those of the observation vector and the 

vector of innovations, but only depends on that of the structural parameter vector. Finally, 
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the computation is different. Although both methods require numerical differentiation, it 

is applied to different objects. In Komunjer and Ng (2011), it is applied to the coefficient 

matrices in the state space representation, while in our case, we compute the derivative of 

the spectral density with respect to the structural parameter vector. 

1.3.1 Tracing out nonidentification curves 

In this section, the discussion focuses on 8 because for 9 the procedure works in the same 

way. Suppose Theorem 1.1 or Corollary 1.2 shows that 9 is locally unidentifiable. 

First, consider the simple case where G{6q) has only one zero eigenvalue. Let c(9q) 

be a corresponding real eigenvector satisfying ||c(#o)ll = 1- Then c(6q) is unique up to 

multiplication by — 1 and thus can be made unique by restricting its first, nonzero element 

to be positive. This restriction is imposed in the subsequent analysis. Let S(9q) be an open 

neighborhood of 6q. Under Assumptions 1.1 to 1.3, G(9) is continuous and has only one 

zero eigenvalue in S(6o), while c(9) is continuous in S(9o). As in Rothenberg (1971), define 

a curve \ using the function 9(v) ,  which solves the differential equation 

 ̂- «•>• 
0(0) = 0O, 

where v  is a scalar that varies in a neighborhood of 0 such that 6(v)  € .5(6q) .  Then, along 

X, 9 is not identified at 9q because 

ft** (/»(«,)(")) dvec CftdoM) 
dv d0(v)' ( } 1' 

for all uj G [—7r, 7r], where the last equality uses Assumption 1.3 and the fact that c{9)  is the 

eigenvector corresponding to the zero eigenvalue (see (1.22) in the mathematical appendix). 
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We call x the nonidentification curve. 

Clearly, this curve is continuous in v. It is also locally unique, in the sense that there 

does not exist another continuous curve containing Oq and satisfying = f$0(uj) for 

all ui G [—7r, 7r]. We state this result as a corollary: 

Corollary 1.6. Let Assumptions 1.1-1.3 hold and let rank(G(6o)) — q — 1. Then, in a 

small neighborhood of 6q, there exists precisely one curve passing through 6q that satisfies 

feiM = /e0(w) for all w € [—tt, tt]. 

Corollary 1.6 is not a trivial result because it involves infinite dimensional maps. The 

key idea in the proof is to reduce the problem to a finite dimensional one by considering 

projections of /#(.) associated with finite partitions of [—n, ir\. Then a standard constant 

rank theorem can be applied. The details of the proof are in Section 1.7. 

The nonidentification curve can be evaluated numerically in various ways. The simplest 

example is the Euler method. First, obtain C(6Q) as described above. Then compute 

recursively 

$(v j + 1) « 0(v j )  +  c(0(v j ) ) (v j + 1 -  Vj) ,  v j + x  > Vj  >  0, j  -  0,1,..., (1.11) 

8{v j-1) » 9(v j)  + c(0(vj))(vj-1 - vj),  Vj-1 < Vj < 0, j  = 0, -1, . . . ,  

where |i>j+i — Vj | is the step size, which can be set to some small constant, say h. The 

associated approximation error in each step is of order 0(h2) if 0(v) has bounded first and 

second derivatives. Therefore, the cumulative error over a finite interval is O(h). It is 

important to note that because 8(9o) is usually unknown, so is the domain of the curve. 

However, this is not a problem in practice, because we can first obtain a curve over a wide 

support, then resolve the model and compute the spectral density using points on this 

curve. The curve can then be truncated to exclude the points that violate determinacy, 

the natural bounds of the parameters (e.g., the discount rate, stationary autoregressive 
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coefficients), and those yielding f${w)  different from /e0(w). 

Next, consider the case where G(0o) has multiple zero eigenvalues. Then, in general, 

there exists an infinite number of curves satisfying (1.10), because any linear combination 

of the eigenvectors points to a direction of nonidentification. It is not useful to try reporting 

all such curves. To see this, suppose do = (9q,9q)' and that changing 91 along a certain 

curve xi while keeping 92 fixed at 9q yields identical spectral densities. Also suppose the 

same property holds when we vary 92 and fix 91 at 8q, yielding a curve X2- Suppose 

the  rank  of  G(6)  s tays  cons tant  in  a  loca l  ne ighborhood of  6q .  Then  changing  9 1  and 0 2  

simultaneously can also generate new curves and there are infinitely many of them. In 

this example, x\ and X2 contain essentially all the information, as the rest of the curves 

are derived from them, and thus it suffices to report only two of them. Motivated by the 

above observation, we propose a simple four-step procedure that delivers a finite number of 

nonidentification curves. The key idea underlying this procedure is to distinguish between 

separate sources of nonidentification by using Corollary 1.4. More specifically, we apply the 

rank condition recursively to subsets of parameters to find the ones that are not identified 

and depict their observationally equivalent values using curves. 

• Step 1. Apply Theorem 1.1 to verify whether all the parameters in the model are 

locally identified. Proceed to Step 2 if lack of identification is detected. 

• Step 2. Apply Corollary 1.4 to each individual parameter. If a zero eigenvalue of 

G(0)s evaluated at 0q is found, then it implies that the corresponding parameter is 

not locally conditionally identified. Apply the procedure outlined above to obtain a 

nonidentification curve (changing only this element and fixing the value of the others 

at 90). Repeating this for all individual parameters, we obtain a finite number of 
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curves, with each curve being a scalar valued function of v. 

• Step 3. Increase the number of parameters in the considered subsets of #o by one at a 

time. Single out the subsets with the following two properties: (i) it does not include 

the subset detected in previous steps as a proper subset, and (ii) when applying 

Corollary 1.4, it reports only one zero eigenvalue. Repeat the procedure outlined 

above for all such subsets to obtain nonidentification curves. Note that if the subset 

has k elements, then the associated curve is a kx 1 vector valued function of v. 

• Step 4. Continue Step 3 until all subsets are considered. Solve the model using pa

rameter values from the curves to determine the appropriate domain for v. Truncate 

the curves obtained in Steps 1 to 4 accordingly. 

Step 2 returns nonidentification curves resulting from changing only one element in 

the parameter vector. In Step 3, the number of elements is increased sequentially. For 

each iteration, the algorithm first singles out parameter subvectors whose elements are 

not separately identified. Then only subvectors satisfying the two properties outlined in 

Step 3 are further considered. The first property is to rule out redundancy, because if a 

fc-element subset constitutes a nonidentification curve, including any additional element 

(fixing its value or varying it if it itself is not conditionally identifiable) by definition 

constitutes another such curve, but it conveys no additional information. The second 

property serves the same purpose, because if some subvector yields a G(B)S with multiple 

zero eigenvalues, then it must be a union of subvectors identified in previous steps and 

containing fewer elements. To see that this is necessarily the case, suppose that for a given 

subvector, two zero eigenvalues are reported. Then there exists a linear combination of the 

two corresponding eigenvectors that makes the first element of the resulting vector zero. 
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Similarly, there is a combination that makes the second element zero. The two resulting 

vectors are valid eigenvectors; however, they correspond to lower dimensional subvectors of 

9. Now apply Corollary 1.4 to these two subvectors. If single zero eigenvalues are reported, 

then it implies that they have already been considered in the previous steps. Otherwise, the 

dimension of the subvectors can be further reduced by using the same argument, eventually 

leading to the conclusion that they have been previously considered. The general case with 

more than two zero eigenvalues can be analyzed similarly. 

In Steps 3 and 4, we do not remove any parameter from 9 after nonidentification curves 

are found. Otherwise, we may fail to detect some curves. To see this, suppose 0 € RA, and 

that the subvectors {6\, #2) and (#1,03,64) form two nonidentification curves. If we removed 

9i and 02 from 0 after considering two-parameter subsets, then we would miss (#1, #3, $4). 

Finally, in Step 4, the truncation narrows down the domain of the nonidentification curve, 

which can be used, for example, to exclude parameter values that are incompatible with 

the economic theory. This is computationally simple to implement in practice because 

the domain of any curve is always one dimensional. For illustration, consider the curve 

(01 (v), 92(v)) and suppose that the economic theory requires the value of 9\ to be nonnega-

tive. Then we simply chop off those v with Oi(v) < 0. If the theory also imposes restriction 

on 02, then we simply drop those v over which at least one restriction is violated. 

This procedure delivers a finite number of curves with the following two features. First, 

the curves are minimal in the sense that, for each curve, all elements in the corresponding 

subvector have to change to generate nonidentification. Fixing the value of any element 

shrinks the corresponding curve to a single point. Second, the curves are sufficient in the 

sense that, for any subvector that can generate a nonidentification curve passing through 

00, it or one of its subsets are already included. Finally, the procedure is simple to imple
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ment because it mainly involves repeated applications of Corollary 4. This simplicity is 

achieved because we start with the lowest dimension, thus there is no need to directly han

dle the situation with multiple zero eigenvalues. It should also be noted that, apart from 

evaluating the nonidentification curves, the procedure is not computationally demanding. 

Once G(0) is computed in Step 1, the G(0)a for any subvector considered can be obtained 

by simply picking out relevant elements of G(0) (see Remark 1.3). Specifically, suppose we 

are interested in a particular fc-element subvector of 6. If we number parameters inside 9, 

and let $ be a set of parameter numbers of interest (i.e., if we want to vary only parameters 

1, 2, and 5, then $ = {1,2,5}), then the (z,j)-th element of G(6)s is given by 

G(% = G(% i l<tj, i = 1,2, j  =  1,2,. . . .  k .  (1.12) 

Also note that in the case of Theorem 1.2, the same logic applies to the term \dn{Qo)'/dd*} 

[d/j,(6o)/d6s>], i.e., having computed it once, one can repeatedly apply Corollary 1.4 by 

selecting relevant elements from it and G(9)s in the same fashion as in (1.12). 

1.3.2 An illustrative example 

To provide a frame of reference, we consider a DSGE model from An and Schorfheide (2007) 

whose identification is also studied by Komunjer and Ng (2011). We consider identification 

based on the (first and) second order properties and also obtain nonidentification curves. 

The log linearized solutions are given by 

Vt = Etyt+1 + 9t - Etgt+1 (r* — Et7rt+i — Etzt+1), 
T 

T(1 — I/) 
7r t  -  /3Etn+i  +  —=oT~(yt  -  at) ,  

UTX (P 

ct  =  y t~9u 

n  = Prn- l  +  (1  -  Pr) lp l^t  +  (1  -  Pr) i>2(yt  ~9t )  +  e r t ,  
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9t  =  Pg9t-1  +  £gt ,  

%t  =  Pz%t—1 "I" £z t>  

where eTt = ert, ert ~ WN(0,a?), egt ~ WN{Q,a%), and e z t  ~ WN(0,aI )  are mutually 

uncorrelated shocks, and 7f is the steady state inflation rate. The vector of parameters to 

be identified is 

9 =  (T,0 ,u ,<l ) ,n 2 , ip i , ip2 ,PT,Pg,Pz ,cr^ag ,a 2
z ) .  

We use parameter values 

0O = (2,0.9975,0.1,53.6797,1.0082,1.5,0.125,0.75,0.95,0.9,0.4,3.6,0.9),3 

as given in Table 3 of An and Schorfheide (2007). 

We first describe how to compute the spectrum for a given parameter vector. We can 

write the model as in (1.5) with 

St  =  (z t ,g t , r t , y t ,TCt , c t ,E t (n t+i ) ,E t (y t+1))'. (1.13) 

The exact formulations of the matrices and Et are omitted here4. We use the 

GENSYS algorithm provided by Sims (2002) to obtain the model solution numerically in 

the form of (1.6), specifically 

St  =  + 0o e t ,  

where 0i and ©0 are functions of 0. The spectral density, as noted before, can then be 

3Note that we scale the values for the variances (a?, from An and Schorfheide (2007) by 105. 
This scaling is merely to ensure numerical stability and does not affect any of our conclusions. 

4Please refer to the MATLAB code available from the authors' web pages for details. 
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computed using (1.4) with 

H{L- ,9)  =  A(L)( I-e l L)'1e Q. 

Given the St in (1.13) and Yt
d = {rt-i,yt,nt, ct)', the matrix A(L) is given by5 

0 0 L 0 0 0 0 0 

0 0 0 10 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 1 0 0 

Note that the results in this example do not rely on using the solution algorithm of Sims 

(2002). Other algorithms considered in the literature (e.g., that in Uhlig (1999)) can be used 

to obtain the same conclusions. The algorithm will produce the P, Q, R, S representation 

as in (1.7), with A;(+i = rt, wt — (yt,nt,ct)',andzt — (ert,gt, ZtY- The spectrum can then 

be computed as in (1.8). 

Analysis based on the second order properties 

To compute G(0o), the integral in G(6q) is approximated numerically by averaging over 

10,000 Fourier frequencies from —4,9997r/5,000 to 4,9997r/5,000 and multiplying by 27r. 

The results reported are robust to varying the number of frequencies between 5,000 and 

10,000. The step size for the numerical differentiation6 is set to 10~7 x 6q. The rank of G(0o) 

is computed as the number of nonzero eigenvalues, using the MATLAB default tolerance 

set at tol — size(G)eps(\\G\\), where eps is the floating point precision of G. We obtain 

rank(G(6o)) = 10. Because q — 13, this means that the entire parameter vector cannot be 

Considering r t  instead of r t - i  in Y t
d  yields the same result. We only need to replace the lag operator 

in the first row of A(L)  by 1. Such a feature is true in general. 
6A simple two-point method is used. In our experience, using higher order methods did not change the 

conclusions. 
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identified from the spectrum. In addition, this suggests that three parameters have to be 

fixed to achieve identification. 

Since the model is not identified, we can follow the procedure outlined in Section 1.3.1 

to pinpoint the sources of nonidentification. In Step 2, we apply Corollary 4 to all one-

element subsets of 6 which, as noted above in (1.12), simply amounts to checking whether 

any diagonal elements of G(9q) are zero. None is found, hence we continue to Step 3 and 

consider all two-element subvectors of 6. We find three subvectors that yield Gs(#o) with 

one zero eigenvalue: {i>, <j>) , (i>, if2), and (<£,7r2). This finding is very intuitive, since all of 

these parameters enter the slope of the Phillips curve equation and thus are not separately 

identifiable, as noted by An and Schorfheide (2007). We do not report the nonidentification 

curves for these cases, as they are trivial and can be eliminated by reparameterizing the 

model with k = r(l — v)f (vW24>) as a new parameter instead. However, highlighting them 

does play a useful part in illustrating our procedure at work. 

Before we continue, we exclude all three-parameter subvectors that contain either of the 

three nonidentification sets identified above as proper subsets. Considering all remaining 

three-element subvectors of 9 yields no new nonidentification sets. However, there is one 

four-element subvector which has one zero eigenvalue: 

{ tp l , lp2 ,Pr ,cr?) -

Interestingly, all of these parameters enter the Taylor rule equation in the model. 

Having excluded all subvectors containing the nonidentification parameter sets above 

and repeating Step 4 with more parameters, we do not find any more sources of nonidenti

fication in this model. The result implies that to achieve identification, it is necessary and 

sufficient to fix two parameters out of and tt2 , and one parameter out of 
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and of. 

The above finding is further confirmed when we repeat the exercise by considering a 

reparameterizat ion of the model  with K as defined above:  0 is  s t i l l  not  identif ied,  and G{6Q)  

has only one zero eigenvalue. Note that the reparameterization amounts to fixing two 

parameters out of u, <f> and 7r2. This leaves only one direction of nonidentification, which 

turns out to be, not surprisingly, along the Pr>0r) subvector. 

We then proceed to evaluate the nonidentification curve, consisting of combinations of 

ipi,ip2,Pr, and ofi using the Euler method with step size h — 10~5 in a small neighborhood 

around 6q. The result is presented in Figure 1.1. The figure shows the nonidentification 

curve pertaining to each parameter. The initial value is at do and the curve is extended in 

each direction using (1.11). The directions are marked on the graph by bold and dotted 

lines. Note that which governs the output weight in the Taylor rule and must be 

nonnegative, is decreasing along direction 1. Therefore, we truncate the curve at the closest 

point to zero where ip2 is still positive. Along direction 2, we reach an indeterminacy region 

before any natural bounds on parameter values are violated, and hence truncate the curve 

at the last point that yields a determinate solution. Therefore, this case also provides an 

illustration of how to narrow down the domain of the nonidentification curve in practice. 

To give a quantitative idea of the parameter values on the curve, we also present a 

sample of values from various points on the curve in Table 1.1. Specifically, ten points were 

taken at regularly spaced intervals from 6q in the positive and negative direction. 

Of course it is necessary to verify that the points on the curve result in identical spectral 

densities. We do this by computing the at half of the Fourier frequencies used in 

the computation of G(@o)  (i.e., 5,000 frequencies between 0 and i t ) 7  for each point on the 

7There is no need to consider w € [—7r,0] because fe(w)  is equal to the conjugate of /«(—w). 
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curve and then compare it to the ones computed at Qq . Due to numerical error involved 

in solving the model, the computation of the G matrix, and the approximation method 

for the differential equation, small discrepancies between the spectra computed at 6q and 

the points on the curve should be expected. We therefore consider three different measures 

of the discrepancies (let denote the (h, l)-th element of the spectral density matrix 

with parameter 0 and let fi be the set that includes the 5,000 frequencies between 0 and 

tt): 

Maximum absolute deviation: max | f$h t (wj )  — fe 0 hi (^ j )  \  > 

max„,,eo | fehiiuij) — fgnh.i(uji) Tkjr •  i  i  .  i  • A *  •  i  .  •  R  U/i CJ» |  J vfH \  /  /  J  V(J (M V J  /  Maximum absolute deviation m relative form : — ;— 
I jOohly^ jn  

Maximum relative deviation: max I hohiiyJj)\ 
I  f o 0 hl (wj) |  

Note that when computing the second measure, the denominator is evaluated at the same 

frequency that maximizes the numerator. To save space, we only report results for the 

points in Table 1.1, as the rest are very similar. Both Tables 1.2 and 1.3 show that even 

the largest observed deviations are quite modest (recall that the Euler method involves 

a cumulative approximation error that is of the same order as the step size, in this case 

10~5). This confirms that the spectral density is constant along the curve. 

Note that all four parameters in pr,0r) have to change simultaneously to gen

erate nonidentification. This can be further verified as follows. Suppose fixing a* still 

leaves (^1,^2,Pr) unidentified. Then this subvector should generate a nonidentification 

curve. However, using the procedure outlined above yields a curve, the points on which 

produce much larger deviations from fe0(u>) than those reported in Tables 2 and 3. Specif

ically, maximum relative and absolute deviations in both directions are of order 10-4 at 

the very first point away from do, which is already higher than the implied approximation 
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error, then reach order 10-2 for most elements of the spectrum in under 4,000 steps away 

from 80, and keep growing fast as the curve is extended further. We also experimented 

with other three-parameter subsets of (ipi,ip2, Pr,(^r) and reached similar findings. These 

findings provide further support for our result. 

Analysis based on the first and second order properties 

We now extend the analysis to incorporate the steady state parameters. Consider the 

measurement equations from An and Schorfheide (2007) that relate the output growth, the 

inflation, and the interest rate observed quarterly to the steady states and the elements of 

St: 

YGR t  = 7(Q) + 100(yt - yt-1 + zt), 

INFLt  =  i t ( A )  +400n,  

INT t  = n ( A )  + r { A )  + 47
((?) + 400rt, 

where 

^(Q) 100(7 — l)i — 400(7? — 1), — 400(-^ — 1), 

and 7 is a constant in the technological shock equation. The parameter vector becomes 

6  = (r,/?, 1/, 0, 7T, 1pi ,  1p2 ,pr ,p g ,  p z ,  ,  0%,  a* ,  7 ( Q ) )  

where 7^) is the only nondynamic parameter. Thus, we have 

/ \ 

= 

V (Q)  

400(tt - 1) 

400(?T - 1) + 400(| - 1) + 47W ^ 
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and the A(L)  matrix in this case is 

/ \ 
100 0 0 100 - 100L 0 0 0 0 

0 0 0 0 400 0 0 0 

0 0 400 0 0 0 0 0 

Setting 7^ = 0.55 as in An and Schorfheide (2007), we consider identification at 

0O - (2,0.9975,0.1,53.6797,1.008,1.5,0.125,0.75,0.95,0.9,0.4,3.6,0.9,0.55). 

Note that n{0)  can be easily differentiated analytically in this case. 

Applying Theorem 1.2, we find rank(G(Qo))  = 12. Hence, 9q is not identifiable from the 

first and second order properties of the observables either. After applying the procedure 

from Section 1.3.1, we find two subvectors, (i/, <f>) and (tpi, ip2, pr, &%), which account for 

nonidentification. Intuitively, we no longer detect (V, 7f) and (</>, w), as 7f enters n(6) and 

hence is identifiable from the mean. Since the two nonidentification curves are exactly the 

same as in the dynamic parameter case, they are not reported here. 

Remark 1.5. This example shows that in this model the Taylor rule parameters are not 

separately identifiable from the (first and) second order properties of observables at 9q. Such 

a finding, first documented in this chapter, was also more recently documented in Komunjer 

and Ng (2011). This constitutes a serious concern for estimation in this and similar DSGE 

models. 

Remark 1.6. The results also have direct implications for Bayesian inference. Suppose we 

impose a tight prior on one of the four parameters, say ?/>i, while using flat priors on the rest. 

Then, the posterior distributions of fa, pr and most often become concentrated due to 

their relation with ipi. Therefore, simply comparing the marginal priors and the posteriors 

may give the false impression that the parameters are separately (or even strongly) identified 

and may overstate the informativeness of the data about the parameters. 
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A procedure to ensure robustness 

In the above discussion we used a particular step size for numerical differentiation and 

the default tolerance level for deciding the ranks of G(6o) and G(6Q). We now examine 

the sensitivity of the results to a range of numerical differentiation steps (from 10~2 to 

10-9) and tolerance levels (from 10-2 to 10"10). The results are reported in Table 1.4. 

We can see that the results are robust over a wide range of step sizes and tolerance levels. 

Discrepancies start to occur when the step size is very small or very large, and when the 

tolerance level is very stringent. This is quite intuitive, as when the step size is too large, 

the numerical differentiation induces a substantial error, since the estimation error for the 

two-point method is of the same order as the step size. When the step size is too small, 

the numerical error from solving the model using GENSYS is large relative to the step 

size; therefore, the rank will also be estimated imprecisely. Our choice of the step size of 

10"7 x 6>o can therefore be seen as balancing the trade-off between derivative precision and 

robustness of the rank computations to tolerance levels as low as 10"10. 

Furthermore, the nonidentification curve can be embedded into a procedure to reduce 

the reliance on the step size and tolerance level. Specifically, we can consider the following: 

• Step 1. Compute the ranks of G{6Q) and G(6Q)  using a wide range of step sizes and 

tolerance levels (such as those in Table 1.4). Locate the outcomes with the smallest 

rank. 

• Step 2. Derive the nonidentification curves conditioning on the smallest rank re

ported. Compute the discrepancies in spectral densities using values on the curve. 

The purpose of Step 1 is to avoid falsely reporting identification when the parameters are 

unidentified, or, more generally, to overstating identification. However, it may incorrectly 
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label identified parameters as unidentified, which is further addressed in Step 2. The idea 

is, if this indeed occurred, then some curves reported in Step 2 will, in fact, correspond 

to parameter subsets that are identifiable. Therefore, the discrepancy surfaces as we move 

along such curves away from Bq and 0q. Note that applying this procedure, with step sizes 

and tolerance levels stated in Table 1.4, leads to the same results discussed in the two 

previous subsections. 

Remark 1.7. Based on the evidence reported here and our experimentation with other 

models, we suggest using 10-7 x Oq and size(G)eps(||G||) as the default step size and tol

erance level when implementing the methods, followed by the two-step procedure outlined 

above to ensure robustness. 

1.4 FDQML estimation 

We first present a brief derivation of the FDQML estimators and then study their asymp

totic properties in both well specified and misspecified models. The subsequent analysis 

assumes that the system is nonsingular, i.e., ny < ne. 

1.4.1 The estimators 

For the sole purpose of deriving the quasi-likelihood function, assume that the process {Ft} 

is Gaussian. Let Uj denote the Fourier frequencies, i.e., uij = 2ixj/T (j = 1,2, ...,T — 1). 

The discrete Fourier transforms are given by 

Note that replacing Yt  by Y t  — f j , (0)  does not affect the value of wt (wj) at these frequen

cies. wt (wj) have a complex valued multivariate normal distribution, and for large T are 

approximately independent, each with the probability density function (see Hannan (1970, 
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pp. 223-225)) 

fny det\ f 9 (u j ) )  e x p  f " t r  ( u ^  W ' T  ' j  =  1 , 2 '  T  ~ L  

Therefore, an approximate log likelihood function of 6 based on observations Y\,Vr is 

given, up to constant multiplication, by 

T-L 
~ [logdet Uo(uj)) + tr {fol{u)j)IT (wj)}], (1.14) 

j=i 

where I t  (u>j)  =  wt (wj )  W t  ( u j )  denotes the periodogram. Letting W(uj)  be an indicator 

function as defined in the previous section, we consider the generalized version of (1.14) 

T—1 
L t (0) = -  W(u>j)  [logdet ( fo(u j ) )  + tr { fg l ( u j ) I T  (wj)}] .  ( L 1 5 )  

j=i 

Then the FDQML estimator for 0 is given by 

§T = arg max Lt (6) • (1-16) 

Thus, the above procedure allows us to estimate the dynamic parameters based on the 

second order properties of {If} without any reference to the steady state parameters. Com

pared with the time domain QML, the estimate here can be obtained without demeaning 

the data. 

It is also simple to estimate both dynamic and steady state parameters jointly. Let 

1 T 
we,T (o) = ^ ~ ^<T ^ = wo<T ^ wa>T ^ -

Noticing that w# T (0) has a multivariate normal distribution with asymptotic variance 

fe(0) and is asymptotically independent of wt (u>j) for j — 1,2,..., T — 1, we arrive at the 
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approximate log likelihood function of 9 : 

LT (9) = LT (e)  - [logdet (MO)) + tr { fe\0)I l T  (0)}] . 

Then the FDQML estimator for 0 is given by 

6t  = arg max Lf (#). (1-17) 
See 

1.4.2 Asymptotic properties of the FDQML estimators 

The asymptotic properties of the estimator (1.16), with W(uj )  = 1 for all ui j .  have been 

studied under various data generating processes in the statistics literature; see, for exam

ple, Dunsmuir (1979) and Hosoya and Taniguchi (1982). The estimator (1.17) received 

less attention. One exception is Hansen and Sargent (1993), who formally established that 

T~1LT (0) converges to the same limit as the time domain Gaussian quasi-maximum like

lihood function for 9 uniformly in 9 G ©. Their result allows for non-Gaussianity and 

model misspecification. This section can be viewed as a further development of their work 

in the following sense. First, we formally establish the relationship between the identi

fication condition and the asymptotic properties of the estimator. Second, we explicitly 

derive the limiting distribution of the estimator, which is important for inference and model 

comparison. 

We gradually tighten the assumptions to obtain increasingly stronger results. To ana

lyze the first issue, the following assumptions are imposed on the second and fourth order 

proper t ies  of  the  observed  process  {Yt} .  

Assumption 1.5. ( i )  {Y t }  i s  generated  by  

Y t  = n(§ 0 )  +  Y t
d (6 0 )  

with Yt
d(9) satisfying (1.1). (ii) fe(u) is positive definite with eigenvalues bounded away 
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from. 0 and oo uniformly in u for all 0 G 0. The elements of dvec(f$(u}))/dd' are bounded 

away from oo uniformly in tu for all 0 € 0. The elements of fo(w) belong to Lip(0) with 

respect to OJ, the Lipschitz class of degree > 1/2. 

Assumption 1.6. et is fourth-order stationary. LetQfl,it9,k(jiij2,h) be the joint cumulant 

of eth,e(t+jl)he{t+h)gand f-(t+j3)k- Assume E^j2j3=-oo \Qhj,g,k {ji,32,h)\ < oo for any 
1  <  h ,  l ,g ,  k  <  n t .  

The first part of Assumption 1.5 states that the model is correctly specified. This is 

be relaxed in Section 1.4.3. The second part strengthens the first condition in Assumption 

1.3. It is satisfied by stationary finite order vector autoregressive moving average (VARMA) 

processes with finite error covariance matrices, which are the forms that the solutions to 

linearized DSGE models typically take. In Assumption 1.6, the summability of the fourth 

cumulant is weaker than the independence assumption, a sufficient condition is provided 

in Andrews (1991, Lemma 1). 

We now define the concept of a locally unique maximizer. 

Let L( ip)  be some generic criterion function. We say <po is a locally unique maximizer of 

L(<p) if there exists an open neighborhood of fo such that L (ip) < L (ipo) for all different 

from <po in this neighborhood. 

Define the following quantities as the limits of T~ lLr (9) and T~1Lt (0) : 

Lemma 1.1. Let Assumptions 1.1-1.3, 1.5 and 1.6 hold. Then 

1 .  T~ 1 Lt  (0)  —> p  Loo (&)  uni formly  over  6  € 0. 

2. 6q is a locally unique maximizer of Loo ($) if and only if it is locally identified. Fur

thermore, if Oq is globally identified,8 then it is the unique maximizer of Loo {&)• 

sThe parameter vector 6 is said to be globally identifiable from the second order properties of {Yt} at a 

J  W(u)  [log det ( f e (u) )  + tr { f 0  V)/0oM}] ̂  

Loo(0)  =  Loo{e) -^{^h) -m) 'U' iQ)^) -^ ) ) .  
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3. 9t  —>p 9q if one of the following two conditions is satisfied: i) 9q is globally identified, 

or ii) Oq is locally identified and the maximization is carried over the corresponding 

small neighborhood of identification, say 6(9q), instead o/0. 

4. Let Assumptions 1.1-1.6 hold. Then Properties 1-3 hold when 0, 9q ,9t , Lt (9) ,  and  

Loo (9) are replaced by 9, 9q ,9t, Lt (9), and Loo {9}, respectively. 

The first result is essentially due to Lemma A.3.3(1) in Hosoya and Taniguchi (1982). 

Their result is pointwise in 9 and is established with W(uj) = 1. Our result strengthens 

theirs to uniform convergence, which is important for showing Property 3. The second result 

formally establishes the close link between the identification conditions and the asymptotic 

properties of the FDQML estimator. The result is quite intuitive ex post, however, it 

is worth documenting given that the identification property is derived without explicitly 

referring to the likelihood function. The first two results lead directly to Property 3 by a 

uniform weak law of large numbers. Property 4 holds based on the same arguments. 

To derive the limiting distribution of the estimators, the assumptions on {et} need to 

be further strengthened. 

Assumption 1.7. (i) {e*} is a vector of martingale difference sequences with respect 

to the a—field generated by es : s < t. £(etaet6|.Ft_T) = Eab, EietattbttAFt-r) = fa&c, 

EittattbetcttdlFt-r) = Cabed os. with £aa > 0 and Caadd > 0 for all 1 < a,b,c,d < nt. (ii) 

Let  c ( t , r )  =  e t e ' t + r —E(ete ' t + r ) .  Assume l imr-^  T' 1  Ylr=oTj= I E [ c a b { t , r ) 2 l  {c a b { t , r ) 2  > eT})  

< e holds for any e > 0, L < oo, and all 1 < a, b < nt. 

Part (i) of Assumption 1.7 imposes restrictions on the conditional moments up to the 

fourth order, and > 0 and Caadd > 0 are the usual positive variance conditions. It is 

essentially the same as Assumption C2.3 in Dunsmuir (1979). This part can be further 

relaxed to allow some conditional heteroskedasticity at the cost of some technical and 

notational complications; see Theorem 3.1 in Hosoya and Taniguchi (1982). Part (ii) is a 

point 9o if for any 6\ G 00, /fl, (u>) = f$0 (w) for all uj e [—rr, 7r] implies Oo = 6i • 



www.manaraa.com

39 

Lindeberg-type condition. It ensures that the sample autocovariances T~1^2 c(*>r) 

(r = 0,1,..., L) satisfy a central limit theorem for any finite fixed L. It can be replaced by 

other sufficient conditions that serve the same purpose. The next result states the limiting 

distributions of 6t and 0t-

Theorem 1.3. Suppose 6q and 0q are globally identified or the maximizations (1.16) and 

(1.17) are over convex compact sets in which they are locally identified and are interior 

points. 

1. Let Assumptions 1.1-1.3 and 1.5-1.7 hold. Then, 

Vf(e T  -  9 0 )  N{0,  

where M and V are q x q matrices, with the (j, I)-th element given by 

Mjl = J W»(r | /»,(") /*>» 
0/fcV), - .a/fc'M 

d$i 
• dw, 

Vji — 4nMjl +  ̂  a'h.r..d=l Kabcd 
i  r  a /rV)  

— J W(u)H*(u;) -^ -^H(u)dw 

ab 

If Oh '(w) 

cd 

where [.J^ denotes the (a, b)-th element of the matrix, Kabd is the fourth cross-

cumulant  o f  e ta , e tb , t tc ,  and e t d ,  H (u)  = H(exp(—tw);  9q)  =  Yl ' jLo  h j{0o)  exp( - iu j )  

(see (1-3)), and H*{u>) is its conjugate transpose. 

2. Let Assumptions 1.1-1.7 hold. Then \ZT(6t  — 9o) —>d N(0, M~lVM~l), where M 

and V are (q+p) x (q+p) matrices, with the (j,l)-th element given by 

Mi dlJ+2BMy fH o ^o) 
I W{w)tr Y'^-ae—'^—gsrj- T 

[ W{u)H*{u) 

ae. 

Vji — 4-nMjl + a'b.r..d= \Kabcd 
_1_ 
2tt J 

rv StfM 
d9j  

H(u)dw 

ab 

_1_ 

2n 
J W(ui)H*(UJ)  

dOi 
H{u)dw + Aji + A i 

cd 
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M Aji = 2 E",6,c=I ^ {/-, W(u) 

^lf - o \0 )H(0)] c  andU,  =  E(e t a e t b e tc ) .  

ab 
} doj > x 

When W{u>) = 1, the first result reduces to Corollary 2.2 in Dunsmuir (1979, p. 497) 

and Proposition 3.1 in Hosoya and Taniguchi (1982), which were obtained in the context of 

parameter estimation in stationary vector time series models. The generalization to a more 

general W(u) is new. The limiting distribution depends on the fourth order properties of 

the process. For DSGE models, this is because the same set of parameters affects both the 

conditional mean and the conditional covariance of the process Yt
d in (1.1). Technically, the 

term ho(0) is in general not an identity matrix, but rather depends on unknown parameters. 

This causes the second term in Vji to be in general nonzero. However, in the important 

special case where €t are Gaussian with diagonal covariance matrix, Kabcd — 0 and the 

limiting distribution depends only on the second order property of the process. This holds 

for different specifications of W(u). Specifically, we have M~lVM~1 = 4nM~l with 

Je 0 ( u )  
dOj  

feo(w)-
d9i 

du, W\n = J W{u>)t, 
— 7T 

or, in matrix notation, 

m-VM- .  to""*™*, 

(1.18) 

The second result in the theorem is new in the literature even for the case with W(u>) = 

1. The inclusion of the steady state parameter makes the limiting distribution dependent 

on the third order properties of Yt, namely £ahc. Again, in the important special case with 

Gaussianity and a diagonal covariance matrix, £abc = 0 and only the second order property 

matters. 
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To construct the confidence interval, f$0{u), H(u) and H*(u) (ui G [—7T, 7r]) can be 

consistently estimated by replacing 9o and 9q with &t and 6t and applying (1.2) and (1.4). 

The derivatives and the integrals can be evaluated numerically. The cumulants £a6c and 

Kabcd can be replaced by their sample counterparts. 

1.4.3 Misspecified models 

We consider the interpretation of the parameter estimates when the DSGE models are 

viewed as approximations. The next assumption allows the true data generating process 

to be different from that implied by the DSGE solution. 

Assumption MI. The observations {Yt}J=l  follow a covariance stationary process given 

by Yt — no = YL°jLo hojSt-j, whose mean hq and spectral density fo{oj) are possibly different 

from fi(9o) and fe0(u). Also, Yt satisfies Assumptions 1.5(H) with fo{u>) replaced by /o(w) 

and Assumptions 1.6 and 1.7 with e t  replaced by e t .  

Suppose the estimates 6t and Ot are constructed in the same way as before and define 

the pseudo-true values 

9™ — arg max L™ (9) and 9™ = arg max L™ (9) , 
6 6© 06© 

where 

it 

*£(#) = -^y"^M[logdefc(/ff(a;)) + tr{/fl-1(W)/o(a;)}]du;, 

— 7T 

Suppose 0™ and 0™ lie in the interior of 0 and 0. 

Corollary 1.7. Suppose 9™ and 9™ are globally identified or the maximizations (1.16) and 

(1.17) are over convex compact sets in which they are locally identified and are interior 

points. Let Assumption MI hold. 
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1. Assume the DSGE solution Y t
d(0) satisfies Assumptions 1.1-1.3 and 1.5(H). Then 

\/r(eT - es1) N^n^im-1) 

with 

n = j W(u) + 

— it 

} f df^(u) 3/^M) 
nj7 = 4tr J W(u)tr lfo(u) f0(u)——\dw 

dw, 

+ ̂ 2 a'b,c ,d=\Kabcd 
1 f dfo™ M 

— J W(uj)H^)—^—H0(u>)dw 

~ 1 T  -I  ab 

1 f ^ ) 
—  j W(U)H^U)-^—H0(U)dw 

cd 

where Kabcd is the fourth cross-cumulant of eta^tb^ta and s td, 

andH0(uj) = Yl'jLo ̂ Oj exp(-icoj). 

2. Assume the DSGE solution is given by fi(6) + Y t
d(0) and satisfies Assumptions 1.1-1.4 

and 1.5(H). Then, \/T(0T — 0™) —N(0, Q -1nfi_1) with 

n = J W(u) log det(fep (w)) + tr {/^(w)/oM} 
d2 

+2 

dddQ' 

MWY 

dw 

80 
'fez1 (0)' 

39' ' 

} ( dfgm (w) a/^H] 
nji = 47r J W(w)tr < fo{u) fo(u) > dw 

. o  MWY 

a'b,c,d=l Kakxt 
1 } dfo™(u) 
— j W(uj)H*0{u>)—j±—HQ{u)dw 

ab 

1 } 3/om (w) 
— J Wi^H^-^—Hoi^dw + •Aji + /!/_, 

cd 
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with A j i  —  2 X ) a > 6 ( C j t f = i ^ a 6 c  W ( w )  

[^0*) fe™(°)Ho(°) c 
and Zabc =  E(£taStb£tc)-

3/«m(w) 
H5{u)-%g—H0(u>) dui > x 

ab J 

Misspecification in general affects both the mean and the variance of the estimate. Note 

that when only estimating the dynamic parameters, misspecifying fi(0) has no effect on the 

estimate 6T-

1.5 Quasi-Bayesian inference 

This section extends the above framework to incorporate prior distributions on the DSGE 

parameters. It also discusses a computationally attractive procedure to obtain parameter 

estimates. The analysis is motivated by Chernozhukov and Hong (2003). We focus on 6q 

because the procedure is identical for 0q. 

Consider the function 

•n ( f f \  =  7r(0)exp(LT  (0))  n  1 qn 
Pt  )  fen(d)exp(LT(0))dd> (  '  }  

where Lt (6) is the same as in (1.15) and w(9) can be a proper prior probability density or, 

more generally, a weight function that is strictly positive and continuous over 0. Bec ause 

exp (Lt (0)) is a more general criterion function than the likelihood, pT(0) is in general not 

a true posterior in the Bayesian sense. However, it is a proper distribution density over the 

parameters of interest, and is termed quasi-posterior in Chernozhukov and Hong (2003). 

The estimate for 6q can be taken to be the quasi-posterior mean 

0T = j 9pT(6)de. 

e 

To compute the estimator, we can use Markov chain Monte Carlo (MCMC) methods, such 
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as the Metropolis-Hastings algorithm, to draw a Markov chain 

whose marginal density is approximately given by pT(0), and 0t can be computed as 

j=1 

Meanwhile, for a given continuously differentiable function g: 0 —> R, for example, an 

impulse response at a given horizon, its estimate can be obtained via 

Here we omit the details on the construction of the Markov chains, since they follow 

standard procedures. One may refer to Chernozhukov and Hong (2003, Section 5) or An 

and Schorfheide (2007) for more details. 

The next result provides an asymptotic justification for the estimator under correct 

model specification. 

Theorem 1.4. Suppose 0q (8q) is globally identified or ir(6) (n(0)) is strictly positive only 

over a compact convex neighborhood of 6q (SO) in which they are locally identified and are 

interior points. Then 0t (St) has the same limiting distribution as in Theorem 3 under 

the corresponding assumptions stated there. 

Consider the construction of confidence intervals for the elements of 9q or, more gener

ally, of g(0o). In the important special case of Gaussianity with S(0) being diagonal, the 

confidence intervals can be obtained directly from the the quantiles of the MCMC sequence 

(#(i), 0(2)^ Such intervals are asymptotically valid because Kotcd = 0 and therefore 

M — V. The same result holds for SO because = 0, thus M = V. In the general case, 

because exp (LT (0)) is a more general criterion function, implying M ^ V, such an interval 
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is not necessarily asymptotically valid, as clearly demonstrated in Chernozhukov and Hong 

(2003). However, valid large sample inference can still be easily carried out using the Delta 

method, as suggested in Chernozhukov and Hong (2003, Theorem 4). Specifically, let M-1 

be T times the variance-covariance matrix of the MCMC sequence (O^K 0^2\ ..., . Let 

V be an estimator for V, which can be obtained using the formula in Theorem 1.3 by 

replacing H(u), Kabai, and df^{u)/d0j (j = 1,2, ...,q) with their consistent estimates. 

Then a valid (1 — a) percent confidence interval for g(0o) is given by 

[Cg,r(<*/ 2 )> C 9,T(1  -  <*/ 2 ) ]>  

where 

with qa  being the a-quantile of the standard normal distribution. Analogous argument 

can be applied to construct confidence intervals for g(0o). The asymptotic validity of such 

intervals can be verified using the same argument as in Chernozhukov and Hong (2003, 

Theorem 4). Therefore, the details are omitted here. 

Under misspecification, a result analogous to Theorem 1.4 can be obtained, with the true 

value replaced by the pseudo-true values and the covariance matrix modified accordingly. 

The key computational difference between the above method and the time domain 

quasi-Bayesian inference is in computing the Kalman filter versus the spectral density 

at the different parameter values. Therefore, the computation costs are similar. The 

spectral domain approach has some additional advantages. First, one can exclude some 

frequencies by specifying an appropriate W(oj), which is not easy to achieve in the time 

domain. Second, if the sole interest is in estimating the dynamic parameters, it is not 

necessary to specify n{6) or to demean the data. Third, although not pursued in this 
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chapter, the spectral domain approach can be extended to handle models without requiring 

log linearizations. The idea is that as long as the spectral density can be computed, 

analytically or by simulation, a criterion function similar to (1.14) can be constructed to 

obtain parameter estimates. Such an idea has been mentioned elsewhere, for example, 

in Diebold, Ohanian and Berkowitz (1998), but has not been formally studied. Finally, 

it provides a platform for conducting hypothesis testing and model diagnosis from the 

spectral domain, as emphasized by Watson (1993). For example, one can readily obtain 

estimates and confidence interval for components of the spectral density matrix and contrast 

them with the observed data. Also, it is simple to construct tests for restrictions imposed 

on a given frequency component, such as the zero frequency. We plan to explore such 

developments in future work. 

1.6 Conclusion 

We have provided a unified treatment of issues related to identification, inference, and 

computation in linearized DSGE models in the frequency domain. In addition to presenting 

a necessary and sufficient condition for local identification of the structural parameters, we 

also proposed a method to trace out nonidentification curves when lack of identification is 

detected. The application of our condition is straightforward because it mainly involves 

computing the first order derivatives of the spectral density. The MATLAB code and 

the results for a more complex medium size DSGE model are available on our webpage. 

For estimation, we considered a frequency domain quasi-maximum likelihood (FDQML) 

estimator and showed that it permits incorporation of relevant prior distributions and is 

computationally attractive. 

The current work can be further developed in several directions. First, we have assumed 
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determinacy, but we conjecture that our identification condition can be applied to any 

selected equilibrium path under indeterminacy, provided that the state vector and the 

parameter space are augmented accordingly. Second, although we have worked with log 

linearized systems, we conjecture the condition can be applied to DSGE models solved with 

higher order approximations, provided the resulting spectral density and its derivatives can 

be computed precisely. Although the chapter does not consider weak identification, it can 

be shown that the frequency domain perspective affords a simple and transparent inferential 

procedure robust to weak identification (see Qu (2011)). We are currently pursuing such 

research directions and hope to report results in the near future. 

1.7 Mathematical appendix 1 

The spectral density matrix fe(uj) is a Hermitian matrix satisfying fo(u>)* = It is 

in general not symmetric. The following correspondence is useful for understanding and 

proving the identification results: 

fe(uj) <—>• fo{<jj)R with fg(u)R = (1.20) 
fle(/i»(w)) /m(/«(u>)) 

-ImUe{tjj)) Re(f6(uj)) 

where Re() and Im() denote the real and the imaginary parts of a complex matrix, i.e., if 

C = A + Bi, then Re(C) = A and Im(C) — B. Because fg(u) is Hermitian, fg{u>)n is real 

and symmetric (see Lemma 3.7.1(v) in Brillinger (2001)). To simplify notation, let 

R(cj;6) = vec{fe(ui)R). 

The following lemma is crucial for proving the subsequent results. 
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Lemma 1.2. We have the identity 

(dvec{f0{u>)')\ (dvec{f9{u>))\ 1 (dR(u>J)\' fdR^d^ 
V  dO' )  V  dO' )  2  V  d&' )  V  d& ) '  (  }  

Proof of Lemma 1.2. The (j, fc)-th element of the term on the left hand side is equal to 

/ dvec(fg{u})')\ '  /  dvec(fg( u)) \  

V df)3  J V dOk J 
_ fdfe(u,)dM")\ / dfe(uj) dfe(u>)\ 1 

= ,r\ m, wk } = mj wk ) )  

1 \(dfe{u)dfe{uj)\R\ 1 .Jd{fe{u)R)d{fe{w)R)\ 

2 \\ dOj d0k  J f 2 \ 80, B6k J 

1 / dvec (fg(u)R) V f dvec (/e(w)H) \  

2 ddj j \  dOk  J '  

where the first equality is because of the identity vec(A')'vec(B) =ti(AB) for generic 

matrices A and B, the second is because f$(u) is Hermitian, thus this term is real valued, 

the third equality is because of the definition (1.20), the fourth is because, for generic 

complex matrices, if Z = XY, then ZR = XRYR (see Lemma 3.7.l(ii) in Brillinger (2001)), 

and the fifth is because fe(w)R is real and symmetric. The last term in the display is simply 

the (j, fc)-th element of the right hand side term in (121). This completes the proof. • 

Proof of Theorem 1.1. Lemma 1.2 implies that G(6) defined by (1.9) is real, symmetric, 

positive semidefinite, and equal to 

1 } {dR(u>-,e0)\'  fdR(u;-,0o)\ J  2} \r-af-jd"-
— 7T 

This allows us to adopt the arguments in Theorem 1 in Rothenberg (1971) to prove the 

result. 

Suppose 9q is not locally identified. Then there exists an infinite sequence of vectors 
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{Ok}^=l approaching Oq such that, for each k, 

R(U; 0O) = R(uj; 0K) for gill U € [—7r, 7r] . 

For an arbitrary u € [—n, 7r], by the mean value theorem and the differentiability of f$(u>) 
i n  0 ,  

0 = Rj(uj\Ok) -  Rji^do) = dRj{U 'a^J ,Uj ) )(6k  - 0o), 

where the subscript j denotes the j-th element of the vector and 0(j. u j )  lies between 0k  

and 90t and in general depends on both uj and j. Let 

, 0k  -0o 
-

n*fc-0oir 

then 

dRj(u>;0(j,uj)) ,  
——QQ, dk  = 0 for every k. 

The sequence {dk} is an infinite sequence on the unit sphere and therefore there exists a 

limit point d (note that d does not depend on j or uj). As 0k —> do, dk approaches d and 

we have 

dRj(u)-,0(j,uj)) J  dRj{u\00) n  

JiE. ae> dt = a? d = 

where the convergence result holds because }e{ui) is continuously differentiate in 0 (As

sumption 1.3). Because this holds for an arbitrary j, it holds for the full vector R(u>; Oq). 

Therefore, 

dR(uj-,00) 
80' 

which implies 

-d = 0, 
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Because the above result holds for an arbitrary ui E [—7r, 7r], it also holds when integrating 

over [—7r, 7r]. Thus 

Applying Lemma 1.2, because d ^ 0, G(9q) is singular. 

To show the converse, suppose that G ( 9 )  has constant rank p  <  q  in a neighborhood 

of 6q denoted by £(#o)- Then consider the characteristic vector c(9) associated with one of 

the zero roots of G(9). Because 

we have 

/pr1 

— 7T 

Since the integrand is continuous in u and always nonnegative, we must have 

for all ui € [—7r, 7r] and all 6 6 5(6q). Furthermore, this implies 

dR(u>; 9) 
dO' 

-c(9) = 0 (1.22) 

for all u 6 [—7r, 7r] and all 9 G <5(0o)- Because G(9) is continuous and has constant rank in 

S(9q), the vector c(9) is continuous in <5(#o)- Consider the curve x defined by the function 

9(v) which solves, for 0< v < v, the differential equation 

^ - «>• 
9(0) = 90 .  
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Then 

dR(u;0(v)) = dR{uJ\ 9(v)) dO(v) _ dR(u;9(v)) = 

dv d0(v)' dv d6(v)' 

for all w G [—7r, 7t] and 0 < v < v, where the last equality uses (1.22). Thus, R(u\9) is 

constant on the curve x• This implies that f$(u) is constant on the same curve and that 

00 is unidentifiable. This completes the proof. • 

Proof of Corollary 1.1. The statement in the subsequent proof applies to all ui € [—7r, tt]. 

Using the same argument as in the proof of Lemma 1.2, 1(6o) can be rewritten as 

m )  =  ± j  (8fy)' ([/Wr1 ® [A»T') a-23) 
— tt 

Because spectral density matrices are Hermitian and positive semidefinite, fo0(u))R is real, 

symmetric, and positive semidefinite (see Lemma 3.7.1 (vii) in Brillinger (2001)). Fur

thermore, because here fg0(u>) has full rank, fe0(u))R 
is in fact positive definite. Thus, 

([/#0(c<;)R] 
1 <%> [fe0(uj)R] 1) is positive definite (see Theorem 1 in Magnus and Neudecker 

(1999, p. 28)). 

We now prove G(6o) and 1(9o) have the same null space. Since they are both q x q 

matrices, the result then implies they have the same rank. First, suppose c € Rq and 

I(9q)c — 0. Then dI(9q)c = 0 or, explicitly, 

/ (—^)' ([/«,(")*]"' ® W) (?̂ r1<-) = o-
— 7T 

Because the integrand is continuous in u and always nonnegative, we must have 

(t^)' M"' ® = "• 



www.manaraa.com

52 

Because ([/e0(w)fl] 1 <S> [/s0Mfi] ') is positive definite, this implies 

8R(UJ; 0o) 
d9' 

-c = 0. 

Therefore, 

(dR(u-,0o)\'  (dR(uj-,do) _n  

V do' ) \ de> 7 

and, consequently, G(6q)c = 0. Next suppose c € R? and G(6q)c = 0. Applying the same 

argument that leads to (1.22), we have 

(dR(u-6Q) 

V 80' ' : ) -a  

Then, trivially, 

(«ic) =o. 

Upon integration, we have I(9q)c — 0. • 

Proof of Theorem 1.2. Using Lemma 1.2 again, G(0) can be equivalently represented as 

= 2 y {—W~) \-~W~) *" + \~a<r) -W 
— 7T 

with both terms on the right hand side being real, symmetric, and positive semidefinite. 

Let 

R(u\0) 
R{u-,0) = 

7^(0) 

then 

Using this representation, the proof proceeds in the same way as in Theorem 1.1, with 9 
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replaced by 9 and R(u\9) replaced by R(w,9). The detail is omitted. • 

Proof of Corollary 1.3. We only prove the first result, as the second can be proven 

analogously using the formulation in the proof of Theorem 1.2. 

Suppose the subvector 6g is not locally identified. Write 0 = (9 s ' , 6 r ') ' . There exists an 

infinite sequence of vectors approaching 9q such that 

R(u\ 9q) = R(uj; OK) for all u G [—7r, 7r] and each k. 

By the definition of partial identification, {<?£} can be chosen so that ||0£ — 0q|| / ||0fc — foil > 

e, with e being some arbitrarily small positive number. The values of 6T
k can either change or 

stay fixed in this sequence; no restriction is imposed on them besides those in the preceding 

display. As in the proof of Theorem 1.1, in the limit, we have 

dR{uj\ 90) 
09' 

-d = 0, 

with da ^ 0 (where d* comprises the elements in d that correspond to 6s). Therefore, on 

one hand, 

G(60)d = 0; 

on the other hand, because d" ^ 0 and by definition 89^/86' = [/dim(0a). Odim(0r)]. we have 

§d = <r*o, 

which implies 

Ga(90)d ? 0. 

Thus, we have identified a vector that falls into the orthogonal column space of G(0q) but 

not of GA(9O). Because the former orthogonal space always includes the latter as a subspace, 
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this result implies Ga(9o) has a higher column rank than G(9q). 

To show the converse, suppose that G(9) and Ga(6) have constant ranks in a neighbor

hood of 6q denoted by 5(9o)- Because the rank of G(6) is lower than that of Ga(9), there 

exists a vector c(9) such that 

G(9)c(9) = 0 but Ga(9)c(6) ± 0, 

which implies for all u € [—7r, 7r] and all 6 € S(6q) (see arguments leading to (1.22)), 

dR(uj; 9) 
d9' 

-c(9) = 0 

but 

dR(u; 9)/d9' 

d9a/d0' 

1 

o
 

1 

II 

c°(9) 
7^0, 

where (f(9) denotes the elements in c(9) that correspond to 9 s .  Because G(9) is continuous 

and has constant rank in 5(9o), the vector c(9) is continuous in 5(9q). AS in Theorem 1.1, 

consider the curve x defined by the function 9(v) which solves, for 0< v < v, the differential 

equation 

89 (v) 
dv 

-  c(9), 9(0) - 0O. 

On one hand, because c ? ( 9 )  ±  0 and c ? ( 9 )  is continuous in 0 ,  points on this curve correspond 

to different 9s. On the other hand, 

dR(u; 9(v)) _ dR(u)\ 9(v)) 80(v) _ dR(w,9(v)) 
dv 

c ( 9 )  =  0 
89(v)' dv d0(v)' 

for all u> G [—n, 7r] and 0 < v < v, implying fe(u) is constant on the same curve. Therefore, 

9q is not locally identifiable. • 

Proof of Corollary 1.3. The proof is essentially the same as in Rothenberg (1971, 
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Theorem 2) and is included for the sake of completeness. Suppose *&(#) has rank s for all 

8 in a neighborhood of 9q. Then, by the implicit function theorem, there exists a partition 

of 6 into 91 e Rs and 02 G such that 

01  = q{02) 

for all solutions of ifi(9) = 0 in a neighborhood of 9q with 6% being an interior point of that 

neighborhood. Consequently, the spectral density can be rewritten as 

fe (w) = /q(02),02 (w), 

which involves only q — s parameters. Let 

Q(02) = ̂ P- and G(9) Q{92)' I G (9) 
Q(6 2 )  

I 

Then, by Theorem 1.1, 9q is identified if and only if G (9q) has full rank. 

Suppose there exists a vector d, G Rq~8 such that 

G (9o)d = 0. (1.24) 

Then the structure of G(9) (see Lemma 1.2) implies that (1.24) holds if and only if 

G(9 0 )  

Let 

QWS) 

I 

Q(0 2
o )  

i 

d = 0. 
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Then we have: (1) c ^ 0 if and only if d ^ 0, and (2) 

c — 0 
G ( 0  o) 

*(ft>) 

if and only if (1.24) holds, where ^ ( 6 q )c = 0 always holds because 9 q  satisfies the constraint 

ip(B) = 0. Thus, the preceding matrix has full rank if and only if 9q is identified under the 

constraints. This completes the proof. • 

Proof of Corollary 1.6. Without loss of generality, assume ny = 1. Otherwise, the proof 

can be carried out by analyzing R{u>\9). The map 6 i—>• fe is infinite dimensional. The 

proof therefore involves two steps. The first is to reduce it to a finite dimensional problem. 

The second is to apply a constant rank theorem (a generalization of the implicit function 

theorem). 

Consider a positive integer N and a partition of the interval [-7r, rr] by ujj = (2nj/2N)-

7r, with j — 0,1,..., 2N. Then, the map 

61—• (fe{u>o) (I-25) 

is finite dimensional. To simplify notation, let FAF/ — (fo(Uo), f e  ( UJ2N))'. Convention

ally, the rank of the above map is defined as the rank of the Jacobian matrix df$^/d6\ 

which is of dimension (2^ + l)xg with rank no greater than q — 1 at 6q, because if the rank 

equals q, then do becomes locally identified, contradicting the assumption in the corollary. 

Note that, for a given N, its rank can be strictly less than q — 1. 

We now show that there exists a finite N such that dfe ,N/d8' has rank q — 1 at 9q. 

Suppose such an N does not exist. Then the rank of dfg^/dff' is at most q — 2 for arbitrarily 
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large N. This implies that the rank of 

r  ( f t  \  27r ( d f e Q { w j ) \ '  (9fe0(ujj)\ 
j—0 x ' 

is at most q — 2 for arbitrarily large N, because vectors orthogonal to dfg^/dd' are also 

orthogonal to Gn(6) by construction. Let A/v,j (j = 1, •••, q) be the eigenvalues of Gn{8 o) 

sorted in an increasing order. Then, for any finite N, 

AJV, i  = XN,2 = 0. 

On the other hand, because Gn(&o) G(^o)i so do its eigenvalues. Thus, for any e > 0, 

there exists a finite N such that |A2 — Ayv,2| < £, where A2 is the second smallest eigenvalue 

of G(0o). Choosing e — A2/2 leads to 

IAtv,2 I > A2/2. 

Since rank(G(#o)) = Q — 1 by Assumption, A2 is strictly positive. Thus, we reach a con

tradiction. Because the convergence of Gn{6) —> G{6) is uniform in an open neighborhood 

of 6q, say £(#0), the above analysis also implies there exists an N such that dfe,n/d6' has 

constant rank q — 1 in that neighborhood. 

Use such an N and consider again the map 9 <—>• feT N ,  which is finite dimensional, is 

continuously differentiable, and has constant rank q — 1 in 6(6q). Define the level set 

{8 € 6(00) : fe,N = fe0 ,N} • 

Then the rank theorem (Krantz and Parks (2002, Theorem 3.5.1 and the discussion on 

p. 56)) implies that the level set constitutes a smooth, parameterized one dimensional 

manifold. Thus, there exists a unique level curve passing through &o satisfying /e,yv = fo0 ,N-
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Therefore, we have established the result for a particular finite N. Further increasing 

N leads to finer partitions of [—7r, 7t]. This cannot decrease the rank of the map (1.25), 

and therefore cannot increase the number of level curves passing through 0q. Thus, in the 

limit, there is at most one level curve passing through 0q. The existence of such a curve 

for the infinite dimensional case has already been shown in the main text, given by (1.10). 

This completes the proof. • 

Proof of Lemma 1.1. Applying Lemma A.3.3 (1) in Hosoya and Taniguchi (1982), for a 

given 0 € 0, we have 

plimT^ oo^Yl tT{W^^e ^ f ̂ {W(u)f9  
1(u)fe0  M} dw 

T-1 

To prove stochastic equicontinuity, consider for any 0i,02 €0, 

T-1 

Apply a first order Taylor expansion 

r-i 

j=l 
j=l 
i £ W("j)vec (IT (a,,)')' ® (*, - 02\ 1.26) 

where 0 lies between Q\ and 02. The norm of (1.26) is bounded by 

^ ||vec(/r (w;)')ll if§ ll0i ~ ̂ 2II • 
3=1 
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The quantity 

U§ {"j) ®I§ { " } ) )  QQ, 

is uniformly bounded by Assumption 1.5(ii). The term T~ l  \\VEC(^T (wj)')|| only 

depends on Oq and is Op  (1) because the diagonal elements of T~ l  YlJ=i It (^j) are positive 

and satisfy a law of large numbers (Hosoya and Taniguchi (1982, Lemma A.3.3 (1))), and 

the norm of the off-diagonal elements can be bounded by the diagonal elements using the 

Cauchy-Schwarz inequality. Therefore, the term (1.26) can be made uniformly small by 

choosing a small ||0i — 02II- Meanwhile, 

T—1 n  

^ WXwjJlogdet/^Wj) -> _L J W(uj)\ogdetfg(u>)dw 

— 7T 

uniformly in 9 €©. Thus, the first result holds. 

For the second result, we first show that #o maximizes (0). Apply the same argu

ment as in Hosoya and Taniguchi (1982, p. 149). For every uj G [—7r, 7r], 

W ( u )  [logdetf g ( u )  +  t r  { f g H ^ ) f e 0  M}] 

=  W  { w )  log det f g 0  (w) + W ( u )  [tr { f g l { u ) f g a  (w)} - logdet {/("'(^/^(w)}] 

= W(w) log det fe0 (w) + W(u) 
ny 

j(u) - log Aj(uj) - 1 
j= i  

W(u))ny, 

where X j ( u i )  is the j'-th eigenvalue of f g  
1  ( u > )  f g 0 ( u ) .  Because X j ( u )  —  log Aj(w) - 1 > 0 and 

the equality holds if and only if Aj(u) = 1, j = 1,..., ny, this implies 

7T Loo{ 0 )  < J W { u > )  (log det fe0 (a;) +  n y )  d u ,  

— 7T 

which holds with equality if and only if Aj(u;) = 1 for all l j € [—7r, 7r] ( j  = l,...,ny). 

However, Aj(uj) = 1 (j — 1,ny) implies fg0(u>) — fg{u) because the latter are positive 
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definite Hermitian matrices. Hence, 0q is a global maximizer. 

The above result implies that any other parameter vector, say 9\, is a maximizer if 

and only if fg1(u) — fe0(w) for all u g [—tt, tt\. Now suppose the parameters are locally 

identified. Then there are no parameter values close to 8q satisfying this equality. Thus, 

0O is the locally unique maximizer. To see the converse, suppose 80 is the locally unique 

maximizer. Then there cannot be any parameter close to 0q satisfying f$0(u>) = fe(uj) for 

all u). Thus, by definition, we have local identification. The argument to establish the result 

for the global identification proceeds in the same way. 

The third result follows directly from the uniform weak law of large numbers. • 

Proof of Theorem 1.3. We only prove the second result, which includes the first as a 

special case. The first order condition (FOC) gives 

7 , -1  dvec(h (w,)') ( 1 
2ttT~1 /2  W{u}j) |  ® r vec( /T  M ~ fgT(ui^ 

j=0 '  

+2T->» £ *£*£(0) (y.-M(Sr)) = 0. 

Note that the first summation starts at j = 0 and IT(0) = h „ (0). The above FOC "T>T 

implies 

2nT'1'2 J2 Wiuj)8™0^*0-^ ) (/^(wj)' ® vec (lT (Uj) - /| (u/,-)) 
j=0 

+2T-i /2 £ ̂ L f^mYt-^T)) = op(l), 

which holds because 0t —>p 0o, fe0(^j) and /x(#o) are continuously differentiate, and 

fe0
1 (uj ) have bounded eigenvalues. Apply a first order Taylor expansion around 0q. Then 



www.manaraa.com

61 

the left hand side of the preceding display is equal to 

2»7"1/2 •£ W{u,)^t$'sr> (/iW (1-27) 
j=0 

xvec (IT (tuj) -  fe0(u>j)) (I) (1-28) 
T 

+2T-,/2 (n) 

—2nT~l Tf WW*"*'#"'" (tfW ® /»>.)) 
j=0 

x T ^ 2 ( 9 - e 0 )  ( I I I )  (1.29) 

(IV) 

+Op(l). 

First consider term (III). The quantity in front of Tl^2(0 — #o) converges to 

/ (/#>)'«/e>)) V 
— TT 

whose (h, A;)-th element is given by 

/tr{ 
— TT ^ 

WM/»„(w)-^/.„M-g5— da,. 

Therefore, the above expansion implies (see Theorem 1.3 for the definition of M )  

r1/2(? - 9 0 )  = M -1 * (I) + M ~ l  * (II) + op(l). 

Term (I) satisfies a central limit theorem (CLT), whose covariance matrix has the {h,k)-th 

element given by (see Theorem 3.1 and Proposition 3.1 in Hosoya and Taniguchi (1982); 

i n  pa r t i cu l a r ,  t he i r  f o rmu la  fo r  U j i )  

4„ J IfW tr AoM— 
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+ Z/ a,'6,c,d=lKa&cd ^ j W(uj)H*(u)^^H(u)cL> 

ab 

1_ 
27r 

/• dfa  '(«) J W( u )H*(l u) 'V 
cd 

Term (II) also satisfies a CLT, with covariance matrix given by 

0 dn(60y f .Un ,dn(90) 

To complete the proof, we only need to verify the covariance matrix between (I) and (II). 

Let 

A  =Cov((/), ( I I ) )  

and consider its (h, fc)-th element 

( 1 ttT-1 

\y7 *->i=o 

(r,-M>»))) 

Define 

Then 

tr 
Ahk = 47rCov 

_1 
W^)^P1 ib M - /*(«))) , 

= df% M and ^(o) = ̂ y f-\o). 
ddh  d0k 

*hk 

= 47rCov < 

= 47rCov 

tr (tt Sj-o1  UT (uj) -  /fcM)) , 

(^ 'weL fa-Ms,,))) 

•jf E£o' W("i) EJUi («j) - /Wu)), 

^ E2, #(<>) EL - *(*>)) 
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ny 
- 47T ^2 Cov 

a,6,c=l 

-J? Ej=0 iV(UJj)̂ ab(°̂ j)(/Tba (Uj) ~ /«06a(w)), 

(0) 5Zt=l (^tc ~ ^c(^o)) 

where Irbai^j) is the (6,a)-th element of Iri^j) and other quantities are defined analo

gously. Consider the two terms inside the curly brackets separately. Applying the same 

argument as in Theorem 10.8.5 in Brockwell and Davis (1991), we have 

T—l 1  i _ 1  

—= )<fia}b(uj)(ITba K) - fe0ba(u)) 
 ̂i=0 

1  T-l ne 

-m E E {PTfg  (Uj) -  EIi f g  K)) + Op(l), 
V j=0/,9=l 

where and (wj) denote the (/, g)-th element of the periodogram of e t .  Applying The

orem 10.3.1 in Brockwell and Davis (1991), we have 

- L # ( o )  £  ( y , c  -  M k ) )  =  4 =  E  E  r t m f f d Q U u  +  o P d ) ,  
vT t=i vT /=1 f=1 

where 77(0) — YlJLo hj(8o) (see (1.3)). Therefore, their covariance is equal to 

t 
t=l j=0 /,<?,/=1 

xE {{rTfg (u,j) - ErTfg (Uj)) ea} + op( 1) 

•J T Tic 

= tE E + op(l) 
«=X /,S,<=1 

= T" E I / (W)9a x ^9l x {^(0)^(0)} + 0P(L). 
n /-9.'=1 Ur 

Some algebra shows that 

n£ 

= 2 y; 
/.9>'=1 

7T 

j  W(u)H(w) 
0/«-1(w) 

X X 

9/ 
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Proof of Corollary 1.7. We prove the second result. Because the argument is very 

similar to Theorem 3 and Taniguchi (1979, Theorem 2), we only provide an outline. The 

estimate 9 solves 

dLT(h 
d0 

and the pseudo-true value 0™ satisfies 

m 

= 0, (1.30) 

80 

Consider a Taylor expansion of (1.30) around 0™ : 

alT (Of) PLriS) - s  ,  
aS + ~amrie ~ e"' ~ 

where 9 lies between 9 and 9™. Rearrange terms and apply (1.31): 

T1 /2  (0 - c) = 

= 0. (1.31) 

2tt 8PLt{0) 

T 8909' 
2jrT-i/2dlriK) _ ^1/a^S m 

30 d9 

Furthermore, 

2n d2LT(§) 

T d9d0' 

Iw{uj) [am losdet(VM) + ^tr {/^M/o(w)} 

. „ wy f-imM%) 

because 6 —>p 9™ and because of the continuity of the integrand. Also, 

i ndLTm _ v tdi& (w) 
dd ae 

= -2tt r-1/2 £ W^-ttr (It M - /oM)} 
j=i 
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+2T-1'2 £ + °p 
t-1 

= (Ml) + (M2) + op (1). 

Terms (Ml) and (M2) satisfy a central limit theorem and can be analyzed in the same way 

as terms (I) and (II) in (1.27). The limiting covariance matrix can be verified accordingly. 

The detail is omitted. • 

Proof of Theorem 4: It suffices to verify that Assumptions 1 to 4 in Chernozhukov and 

Hong (2003) hold under our set of conditions. Relabel these assumptions as CHI to CH4. 

CHI and CH2 are trivial. CH3 is implied by Lemma 1.1(1), 1.1(2) and 1.1(4). To verify 

CH4, applying a second order Taylor expansion of Lt (0) around 0q (see CH4(i)): 

LT (6) -  L t  (90) = (6- + \(0 -  0Q_ 0q)  + R t {0) 

with 

oy [9 2 £t (9 t) &LrW)\ ( .  
R t(6) -(»- e0) aew~j~ "">• 

where Or lies between 0 and 0q. Now 

T_ l / 2dLT (0o) yy 
Uu 

Therefore, CH4(ii) is satisfied (V corresponds to in CH4). For CH4(iii), note that V is 

nonrandom and positive definite, and that 

,&L t(0q) 
dm' 

-  r -  E  « / - ( » « < £ ( < * » )  
j = l  

- IJ w«*> {/.»' ® «'(«>} - (>32) 
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+o(l), (1.33) 

where the leading term on the right hand side is nonrandom and positive definite because 

and 

— 7T 

are positive definite by Assumption 1.5 and local identification. It is O(l) because the 

integrand is bounded; see Assumption 1.5. Therefore, CH4(iii) is satisfied. CH4(iv.a) 

holds because 

|*t ( 0 ) | <  T1 /2(0 -  0o) T^d2LT(0T) T-id2LT(9Q) 
dead' aeae' 

where the second term can be made arbitrarily small by choosing ||0 — 6>o|| small because of 

(1.32) and the boundedness and continuity of dvec(foiui))/80' and /0
-1(u;) in 0 (Assump

tions 1.3 and 1.5(ii)). CH4(iv.b) holds because of the preceding argument and the fact that 

\\Tl'2{0 -0o)||2=O(l). 

The proof for involves the same argument and is therefore omitted. • 
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1.8 Supplementary materials appendix 1 

Table 1.1: Parameter values and the corresponding two smallest eigenval
ues along the nonidentification curve 

•02 Pr <*r Ai A2 
0o 1.500000 0.125000 0.750000 0.400000 7.09E-10 3.251348 

Panel (a). Direction 1 
0i 1.507156 0.112571 0.749192 0.399139 1.47E-10 3.266554 
62 1.514316 0.100134 0.748378 0.398272 4.73E-10 3.281960 
03 1.521476 0.087698 0.747559 0.397401 9.56E-10 3.297558 
04 1.528636 0.075262 0.746735 0.396525 1.15E-09 3.313348 
05 1.535796 0.062827 0.745905 0.395644 5.33E-10 3.329337 
06 1.542955 0.050392 0.745070 0.394758 1.79E-09 3.345526 
07 1.550114 0.037958 0.744229 0.393868 1.90E-09 3.361918 
08 1.557272 0.025524 0.743383 0.392973 1.82E-10 3.378520 
09 1.564431 0.013091 0.742531 0.392073 1.80E-09 3.395333 
010 1.571589 0.000659 0.741674 0.391168 1.79E-10 3.412362 

Panel (b). Direction 2 
0~i 1.449285 0.213085 0.755581 0.405975 2.19E-10 3.148993 
0-2 1.398558 0.301193 0.760920 0.411732 1.30E-11 3.054759 
0-3 1.347819 0.389321 0.766031 0.417282 5.23E-13 2.967750 
6-4 1.297070 0.477467 0.770930 0.422636 1.12E-12 2.887193 
0-5 1.246311 0.565629 0.775628 0.427803 3.63E-12 2.812419 
0-6 1.195543 0.653807 0.780138 0.432793 6.18E-12 2.742843 
0-7 1.144767 0.741998 0.784471 0.437615 3.12E-12 2.677957 
0-8 1.093985 0.830202 0.788638 0.442275 3.33E-12 2.617315 
0-9 1.043195 0.918417 0.792647 0.446783 4.15E-12 2.560521 
0-10 0.992400 1.006643 0.796507 0.451145 3.76E-12 2.507230 

Note. O j  represent equally spaced points taken from the nonidentification 
curve extended from 6q for 14475 steps in direction 1, and for 101972 steps 
in direction 2. Ai and A2 represent the smallest and the second smallest 
eigenvalues of G{9i)a respectively. The step size of the approximation is 
10~5. Along direction 1, the curve is truncated at the closest point to zero 
where ip2 is still positive, as it determines the output weight in the Taylor rule 
and must be nonnegative. Along direction 2, the curve is truncated at the 
last point yielding a determinate solution. Results are rounded to the nearest 
sixth digit to the right of decimal. 
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Table 1.2: Deviations of spectra across frequencies (direction 1) 

Spectral density matrix element number 
(1,1) (2,1) (3,1) (2,2) (3,2) (4,2) (3,3) 

02 
03 
04 
0b 
06 
07 
08 
09 
010 

0i 
02 
03 
04 
05 
06 
07 
0B 
09 

010 

01 

02 

03 
04 
05 
06 
07 
08 
09 
010 

Measure 1: Maximum absolute deviations across 
1.49E-07 1.68E-08 
2.96E-07 
4.43E-07 
5.93E-07 
7.35E-07 
8.82E-07 
1.04E-06 
1.19E-06 
1.34E-06 
1.49E-06 

3.40E-08 
5.11E-08 
7.13E-08 
8.51E-08 
1.02E-07 
1.24E-07 
1.37E-07 
1.57E-07 
1.76E-07 

9.85E-08 
1.97E-07 
2.94E-07 
3.97E-07 
4.88E-07 
5.86E-07 
6.92E-07 
7.88E-07 
8.91E-07 
9.94E-07 

1.99E-08 
3.98E-08 
5.83E-08 
7.76E-08 
9.78E-08 
1.18E-07 
1.37E-07 
1.59E-07 
1.79E-07 
1.99E-07 

1.26E-08 
2.52E-08 
3.68E-08 
4.87E-08 
6.18E-08 
7.43E-08 
8.64E-08 
1.01E-07 
1.13E-07 
1.25E-07 

frequencies 
99E-08 5 
98E-08 
83E-08 
76E-08 
78E-08 
18E-07 
37E-07 
59E-07 
79E-07 
99E-07 

80E-08 
.16E-07 
.75E-07 
36E-07 
89E-07 
.47E-07 
.11E-07 
64E-07 
.27E-07 
.89E-07 

Measure 
6.66E-09 
1.32E-08 
1.98E-08 
2.65E-08 
3.28E-08 
3.94E-08 
4.62E-08 
5.29E-08 
5.98E-08 
6.66E-08 

2: Maximum absolute 
2.11E-09 7.03E-09 
4.28E-09 
6.43E-09 
8.97E-09 
1.07E-08 
1.29E-08 
1.56E-08 
1.73E-08 
1.97E-08 
2.22E-08 

1.40E-08 
2.10E-08 
2.83E-08 
3.48E-08 
4.18E-08 
4.93E-08 
5.62E-08 
6.35E-08 
7.09E-08 

deviations across frequencies in relative form 
8.19E-10 7.02E-09 9.83E-09 6.34E-09 
1.64E-09 1.40E-08 1.97E-08 1.26E-08 
2.44E-09 2.06E-08 2.89E-08 1.91E-08 
3.32E-09 2.75E-08 3.87E-08 2.58E-08 
4.08E-09 3.45E-08 4.85E-08 3.15E-08 
4.91E-09 4.15E-08 5.83E-08 3.78E-08 
5.80E-09 4.85E-08 6.83E-08 4.49E-08 
6.60E-09 5.62E-08 7.89E-08 5.07E-08 
7.46E-09 6.31E-08 8.87E-08 5.75E-08 
8.34E-09 7.01E-08 9.86E-08 6.43E-08 

Measure 3: Maximum relative deviations across frequencies 
7.57E-09 
1.48E-08 
2.25E-08 
2.96E-08 
3.69E-08 
4.42E-08 
5.13E-08 
5.91E-08 
6.67E-08 
7.42E-08 

3.01E-08 
6.36E-08 
8.82E-08 
1.27E-07 
1.54E-07 
1.89E-07 
2.31E-07 
2.60E-07 
2.92E-07 
3.28E-07 

2.01E-08 
4.14E-08 
5.91E-08 
8.27E-08 
1.01E-07 
1.23E-07 
1.48E-07 
1.68E-07 
1.89E-07 
2.12E-07 

4.64E-09 
9.33E-09 
1.36E-08 
1.82E-08 
2.29E-08 
2.76E-08 
3.23E-08 
3.74E-08 
4.20E-08 
4.67E-08 

9.15E-09 
1.83E-08 
2.68E-08 
3.56E-08 
4.50E-08 
5.41E-08 
6.31E-08 
7.33E-08 
8.22E-08 
9.13E-08 

1.20E-08 
2.41E-08 
3.53E-08 
4.72E-08 
5.93E-08 
7.13E-08 
8.34E-08 
9.66E-08 
1.08E-07 
1.21E-07 

6.34E-09 
1.26E-08 
1.91E-08 
2.58E-08 
3.15E-08 
3.78E-08 
4.49E-08 
5.07E-08 
5.75E-08 
6.43E-08 

Note. 6\ to 0io are as defined in Table 1.1. 
deviations to the ones reported here. 

The omitted elements display identical 
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Table 1.3: Deviations of spectra across frequencies (direction 2) 

Spectral density matrix element number 
(1,1) (2,1) (3,1) (2,2) (3,2) (4,2) (3,3) 

0-i  

0 - 2  

0-3 

0- 4  

0-5 

0-6 

0-7 
0-8 

0-9 

0-10 

0-1 

0 - 2  

0-3 

0 -5 

0-6 

0-7 

0-8 

0-9 

0-10 

0 -1 

0 - 2  

0-3 

0-4 
0-5 

0-6 

0-7 

0-8 

0-9 

0-10 

8.49E-07 
1.69E-06 
2.52E-06 
3.35E-06 
4.17E-06 
4.99E-06 
5.80E-06 
6.62E-06 
7.43E-06 
8.26E-06 

Measure 1: 
8.20E-08 
1.59E-07 
2.34E-07 
3.07E-07 
3.83E-07 
4.64E-07 
5.58E-07 
6.76E-07 
8.17E-07 
9.74E-07 

Maximum 
5.00E-07 
1.01E-06 
1.53E-06 
2.06E-06 
2.60E-06 
3.16E-06 
3.72E-06 
4.30E-06 
4.89E-06 
5.50E-06 

absolute deviations across frequencies 
1.45E-07 
2.75E-07 
3.95E-07 
5.04E-07 
6.02E-07 
6.91E-07 
7.72E-07 
8.44E-07 
9.10E-07 
9.67E-07 

9.87E-08 
1.86E-07 
2.64E-07 
3.34E-07 
3.96E-07 
4.50E-07 
4.98E-07 
5.39E-07 
5.75E-07 
6.04E-07 

1.45E-07 
2.75E-07 
3.95E-07 
5.04E-07 
6.02E-07 
6.91E-07 
7.72E-07 
8.44E-07 
9.10E-07 
9.67E-07 

52E-07 
28E-07 
18E-07 
13E-06 
46E-06 
80E-06 
17E-06 
55E-06 
95E-06 
38E-06 

Measure 
3.79E-08 
7.56E-08 
1.13E-07 
1.50E-07 
1.86E-07 
2.23E-07 
2.59E-07 
2.96E-07 
3.32E-07 
3.69E-07 

2: Maximum absolute 
1.62E-08 3.56E-08 
3.07E-08 
4.37E-08 
5.55E-08 
6.55E-08 
7.42E-08 
8.06E-08 
8.50E-08 
1.03E-07 
1.22E-07 

7.22E-08 
1.09E-07 
1.47E-07 
1.86E-07 
2.25E-07 
2.65E-07 
3.07E-07 
3.49E-07 
3.92E-07 

deviations 
3.65E-09 
7.67E-09 
1.18E-08 
1.62E-08 
2.07E-08 
2.54E-08 
3.01E-08 
3.47E-08 
3.92E-08 
4.39E-08 

across frequencies in 
4.78E-08 6.30E-08 
9.22E-08 
1.34E-07 
1.73E-07 
2.09E-07 
2.42E-07 
2.72E-07 
3.00E-07 
3.25E-07 
3.48E-07 

1.23E-07 
1.79E-07 
2.33E-07 
2.84E-07 
3.32E-07 
3.76E-07 
4.17E-07 
4.55E-07 
4.90E-07 

relative form 
2.75E-08 
5.76E-08 
8.93E-08 
1.23E-07 
1.59E-07 
1.97E-07 
2.37E-07 
2.79E-07 
3.22E-07 
3.69E-07 

4.78E-08 
9.58E-08 
1.43E-07 
1.89E-07 
2.34E-07 
2.80E-07 
3.24E-07 
3.69E-07 
4.13E-07 
4.57E-07 

Measure 3: 
1.32E-07 
2.46E-07 
3.59E-07 
4.65E-07 
5.67E-07 
6.66E-07 
7.62E-07 
8.55E-07 
9.47E-07 
1.04E-06 

Maximum 
9.81E-08 
1.89E-07 
2.78E-07 
3.64E-07 
4.48E-07 
5.31E-07 
6.12E-07 
6.92E-07 
7.71E-07 
8.51E-07 

relative deviations across 
3.22E-08 6.66E-08 8. 
6.14E-08 
8.84E-08 
1.13E-07 
1.36E-07 
1.56E-07 
1.75E-07 
1.92E-07 
2.07E-07 
2.21E-07 

1.27E-07 
1.82E-07 
2.32E-07 
2.78E-07 
3.19E-07 
3.56E-07 
3.89E-07 
4.19E-07 
4.44E-07 

frequencies 
37E-08 5 
60E-07 
31E-07 
96E-07 
57E-07 
12E-07 
63E-07 
09E-07 
51E-07 
90E-07 

.00E-08 

.41E-08 

.34E-07 
69E-07 
00E-07 
27E-07 
50E-07 
79E-07 
22E-07 
69E-07 

Note. 9-i to 0_io are as defined in Table 1.1. The omitted elements display identical 
deviations to the ones reported here. 
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Table 1.4: Rank sensitivity analysis 

Differentiation step size x 0o 
1E-02 1E-03 1E-04 1E-05 1E-06 1E-07 1E-08 1E-09 

TOL 

0
 

1
 in the 13-parameter model 

1E-02 10 10 10 10 10 10 10 10 
1E-03 10 10 10 10 10 10 10 10 
IE-04 11 10 10 10 10 10 10 10 
1E-05 11 10 10 10 10 10 10 10 
IE-06 11 11 10 10 10 10 10 11 
1E-07 12 11 10 10 10 10 10 11 
1E-08 12 12 11 10 10 10 11 12 
1E-09 12 12 11 10 10 10 11 12 
1E-10 12 12 12 11 10 10 12 12 
Default 12 12 11 10 10 10 11 12 

Rank of G(0q)  in the 11-parameter model 
1E-02 10 10 10 10 10 10 10 10 
1E-03 10 10 10 10 10 10 10 10 
1E-04 11 10 10 10 10 10 10 10 
1E-05 11 10 10 10 10 10 10 10 
IE-06 11 11 10 10 10 10 10 11 
1E-07 11 11 10 10 10 10 10 11 
1E-08 11 11 11 10 10 10 11 11 
1E-09 11 11 11 10 10 10 11 11 
1E-10 11 11 11 11 10 10 11 11 
Default 11 11 11 10 10 10 10 11 
Note. TOL refers to the tolerance level used to determine the rank. Default refers to 
the MATLAB default tolerance level. 
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Note. The nonidentituation curve is given by d${v)/dv = c(0), 0(0) = 0o, where c(0) is the eigenvector corresponding to the only zero eigenvalue 
of C(0). The curve is computed recursively using the Euler method, so that 0(t;+i) = 0(vj) + c($(vj))h, where h is the step si2e. fixed at le-05. 

02.  p r• ol) change simultaneously along the curve in the indicated directions. Directions 1 and 2 are obtained by restricting the first element 
of c(6) to be positive or negative respectively. Since a negative Taylor rule weight contradicts economic theory, direction 1 is truncated at the 
last point where V;2 is nonnegative. Direction 2 is truncated at the boundary of the determinacy region. Consequently, the curve is extended 
from for 14,475 steps in direction 1, and for 101,972 steps in direction 2. 

Figure 1-1: The nonidentification curve (V;i, Pr,&r) 
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Chapter 2 

Frequency Domain Analysis of Medium Scale 

DSGE Models with Application to Smets and 

Wouters (2007) (with Zhongjun Qu) 

2.1 Introduction 

Dynamic stochastic general equilibrium (DSGE) models have become a widely applied in

strument for analyzing business cycles, understanding monetary policy and for forecasting. 

Some medium scale DSGE models, such as that of Smets and Wouters (2007) (henceforth 

SW (2007)), are considered both within academia and by central banks. These models typ

ically feature various frictions, often involving a relatively large number of equations and 

parameters with complex cross-equation restrictions. Although such sophistication holds 

promise for delivering rich and empirically relevant results, it also poses substantial chal

lenges for identification, estimation and model diagnostics. This chapter shows how these 

issues can be tackled from a frequency domain perspective, using the framework developed 

in the previous chapter (published as Qu and Tkachenko (2012)). We use SW (2007) as 

the working example throughout the chapter, motivated by the fact that it has become 

a workhorse model in the DSGE literature. The analysis of other medium scale DSGE 

models can be conducted in a similar manner. 

The identification of DSGE models is important for both model calibration and formal 

statistical analysis, although the relevant literature has lagged behind relative to estimation 
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until quite recently. Canova and Sala (2009) marks an important turning point by con

vincingly documenting the types of identification issues that can surface when analyzing a 

DSGE model. Iskrev (2010) gives sufficient conditions for the local identification of struc

tural parameters based on the mean and a set of autocovariances. Qu and Tkachenko (2012) 

and Komunjer and Ng (2011) are the first to provide necessary and sufficient conditions 

for local identification. In the previous chapter, we have shown that taking a frequency 

domain perspective can deliver simple identification conditions applicable to both singular 

and nonsingular DSGE systems without relying on a particular (say, the minimum state) 

representation. 

In this chapter, we show that the methods developed in Chapter 1 of this thesis can 

be applied in a straightforward manner to SW (2007) to deliver informative results. We 

structure our identification analysis into the following steps: (1) Identification based on 

the second order properties. This shows whether the parameters can be identified based 

solely on the dynamic properties of the system. (2) Identification based on the first (i.e., 

the mean) and the second order properties. This reveals whether the information from 

the steady state restrictions can help identification. (3) Identification based on a subset of 

frequencies. This is motivated by the fact that DSGE models are often designed to model 

business cycle movements, not very long or very short term fluctuations. Upon completing 

the above three steps, we find that the parameters in SW (2007) are unidentified without 

further restrictions. (4) To obtain further insights, we derive the nonidentification curves 

to depict parameter values that yield observational equivalence. The curves immediately 

reveal which and how many parameters need to be fixed to yield local identification. Note 

that the results from Steps (1) and (2) are in accordance with Iskrev (2010) and Komunjer 

and Ng (2011, the web appendix). Although these findings are not new, the analysis is, 
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and it also illustrates the simplicity of taking a frequency domain approach in this setting. 

Issues in Steps (3) and (4) have not been previously considered for medium scale DSGE 

models. 

Next, we consider estimating SW (2007) from a frequency domain perspective using the 

methodology developed in the previous chapter. The method has two features. First, it 

allows for estimation and inference using a subset of frequencies, something that is outside 

the scope of conventional time domain methods. This is important because DSGE models 

are designed for medium term economic fluctuations, not very short or long term fluctu

ations. Second, it is straightforward to conduct Bayesian inference and the computation 

involved is similar to the time domain approach. Although we have analyzed the statistical 

properties of this method in the previous chapter, we did not provide an application. This 

chapter provides the first application of the method to a medium scale DSGE model. 

Specifically, we follow SW (2007) in specifying the priors and An and Schorfheide (2007) 

in obtaining the posterior mode and Hessian for the proposal distribution. A Random 

Walk Metropolis (RWM) algorithm is used to obtain the posterior draws. We start with 

inference using the mean and the spectrum, then the full spectrum only and finally consider 

inference using only business cycle frequencies. The same priors are used throughout. For 

the first two cases, we obtain estimates that are very similar to those of SW (2007). This 

reflects the close linkage between the time and frequency domain likelihood. However, for 

the third case, we obtain noticeably different estimates of the parameters governing the 

exogenous disturbances. At the same time, the parameters governing contemporaneous 

interactions of the observables remain similar with only a few exceptions. The impulse 

response functions are noticeably different. To our knowledge, this is the first time such a 

finding is documented in the DSGE literature. 
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Then, we contrast the model implied spectrum and absolute coherency with that ob

served in the data. The analysis is motivated by Watson's (1993) suggestion of plotting 

the model and data spectra as one of the most informative diagnostics. It is also related 

to King and Watson (1996), who compared the spectra of the three quantitative rational 

expectations models with that of the data. Both the business cycle and the full spectrum 

based estimates do a reasonable job in matching these two key features. The business cycle 

based estimates achieve a better fit at the intended frequencies. However, they both under

estimate the absolute coherency of the interest rate and other four variables (consumption 

growth, investment growth, output growth, and labor hours). The latter finding suggests 

a dimension along which the model can be further improved. To our knowledge, this is the 

first time such analysis is applied to medium scale DSGE models. 

Our results suggest that the frequency domain perspective affords substantial depth 

and flexibility in identification analysis and in estimating the parameters of the model, 

while remaining simple in application and comparable in terms of computational burden 

relative to the conventional time domain methods. In practice, we suggest to carry out 

both the business cycle and the full spectrum based analysis jointly. This allows us to 

assess to what extent the results are driven by the very low frequency misspecifications, 

which is a hard task to tackle using a time domain framework. 

The remainder of the chapter is structured as follows. Section 2.2 includes a brief de

scription of the SW (2007) model to make the chapter self-contained. Section 2.3 carries 

out identification analysis and reports nonideiitification curves. Section 2.4 presents estima

tion results. Section 2.5 conducts model diagnostics from a frequency domain perspective. 

Section 2.6 concludes. A more comprehensive summary of model equations is provided in 

Section 2.7. All figures and tables are located in Section 2.8. 
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2.2 The DSGE model of SW (2007) 

SW (2007) has become a workhorse model in the DSGE literature and many medium scale 

DSGE models consist of modifications or extensions of this model. It is an extended version 

of the standard New Keynesian real business cycle model, featuring a number of frictions 

and real rigidities. To make this chapter self-contained, we subsequently briefly describe 

the structure of the model economy. Note that the discussion is meant to highlight the key 

elements in the model, and a more detailed description of the model equations, variables, 

and parameters is included in the mathematical appendix. 

The model has seven observable endogenous variables with seven exogenous shocks. 

In equilibrium, the model has a balanced growth path driven by deterministic labor-

augmenting technological progress. We focus on the log linearized system as in the original 

article. 

2.2.1 The aggregate resource constraint 

The aggregate resource constraint is given by 

y t  — CyCt  +  iy i t  +  ZyZt  +  .  

Output (y t) is composed of consumption (c t),  investment (it),  capital utilization costs as 

a function of the capital utilization rate (zt), and exogenous spending (ef). The latter is 

assumed to follow a first order autoregressive (AR) model with an i.i.d. Normal error term 

(rjf) and is also affected by the productivity shock (77") as follows: 

4 = Pg£9t-1 + PgaVt + Vt • 
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The coefficients Cy, iy  and zy  are functions of the structural parameters, as shown in the 

mathematical appendix. 

2.2.2 Households 

Households maximize a nonseparable utility function with two arguments (consumption 

and labor effort) over an infinite life horizon. Consumption appears in the utility function 

relative to a time-varying external habit variable. The dynamics of consumption follow 

from the consumption Euler equation 

c t  = cict-i + (1 -  ci)EtCt+i + c2(lt  ~ E tl t +1) -  c3(r t  - E tn t + 1) -  eb ,  

where It is hours worked, rt is the nominal interest rate, and nt is inflation. The disturbance 

term e\ can be interpreted as a risk premium that households require to hold the one period 

bond. It follows the stochastic process 

eb
t  = pb£b

t-i + 'It-

Households also choose investment given the capital adjustment cost they face. The 

dynamics of investment sure given by 

it  = Uit-i + (1 -  h) E ti+1 + i 2 qt  + e\, 

where e\ is a disturbance to the investment specific technology process, given by 

e\ = Pi£\_ i  + rf t .  

The corresponding arbitrage equation for the value of capital is given by 

qt  =  q \E t q t +i  +  (1 -  qi)  E tr^x  - {r t  - 7rt+i) - — eb
t  with eb

t  = pb£b
t-i + Vt  • 

C3 
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2.2.3 Final and intermediate goods market 

The model has a perfectly competitive final goods market and a monopolistic competitive 

intermediate goods market. It features a symmetric equilibrium where all firms make 

identical decisions. At such an equilibrium, the aggregate production function is 

Vt = dp (otkf + (1 - a) l t  4- e"), 

where a captures the share of capital in production, and the parameter <frp is one plus the 

fixed costs in production. Total factor productivity follows the AR(1) process 

£t = PaSt-i + tit-

The current capital service use ( k f )  is a function of capital installed in the previous pe

riod and the degree of capital utilization (zt): kf — kt-\ + zt. Furthermore, the 

capital utilization is a positive fraction of the rental rate of capital (r*): zt = zirf. The 

accumulation of installed capital (kt) is given by 

k t  = k\kt~\ + (1 -  fcj) i t  + fc2£j, 

where e\ is the investment specific technology process as defined before. 

The price mark-up, defined as the difference between the average price and the nominal 

marginal cost, satisfies 

fJ-t =a  (kt  ~ lt) + £t  ~ wt> 

where wt is the real wage. The firms set prices according to the Calvo model, leading to 

the following New Keynesian Phillips curve 

7T t  - niTTt-i + 7r2£t7Tt+1 - n3fi? + ef, 
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where ep
t is a disturbance to the price mark-up, following an ARM A (1,1) process given by 

£t  = Pp£t-i  +Tit~ Vprf-v 

The MA(1) term is intended to pick up some of the high frequency fluctuations in prices. 

Finally, cost minimization by firms implies that the rental rate of capital satisfies 

2.2.4 Labor market 

Labor is differentiated by an intermediate labor union. The wage mark-up is 

Real wage w t  adjusts slowly due to the rigidity 

w t  = wiwt-i + (1 - u>i) (E tw t +\  + E t7rt+i) - W27r t  + w37r t-i - w4/j , f  + ef.  

The wage mark-up disturbance is assumed to follow an ARMA(1,1) process: 

2.2.5 Government policies 

The empirical monetary policy reaction function is 

r t  = pr t-i + (1 - p) (r,7rt + rY  (y t  ~  y* t)) + rA y  [ (y t  -  y*)  -  {y t -1 -  J/t-i)] + • 

The monetary shock eT
t follows an AR(1) process: 

_ _r , nr e t  — Pr^t—l + Vt • 

rt  = - (kt  -  h) + W t .  

e? = Pwef-i +VT~ rfi-
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The variable yt* stands for a time-varying optimal output level that is the result of a 

flexible price-wage economy. More generally, we use superscript star to denote variables 

in this economy. Such an economy needs to be solved along with the sticky price-wage 

economy for the purposes of identification and estimation. 

2.2.6 The model solution 

Our analysis requires computing the spectral density matrix of the observed endogenous 

variables. This is straightforward to obtain using the GENSYS algorithm of Sims (2002), 

although other methods (e.g., Uhlig (1999)) can also be used. 

The GENSYS algorithm requires representing the state variables in the following form: 

To-St = ri5f_! + ^iZt + nc«, 

where St is a vector of model variables that includes the endogenous variables and the 

conditional expectation terms, Zt are exogenously evolving and possibly serially correlated 

random disturbances, and are expectation errors. For SW (2007) (note that the ordering 

of variables and parameters corresponds to our MATLAB code), 

St = [ri?, rf t ,  z*,rka
t*, q*, c*, i*, w*, r*, k*, $,  z t f  r£, k s

t ,q t ,  C t , i t ,y t , l t ,  *t,m, n, 

eleleleielele?,kuE(i*t+1),E(c*t+1),E(r*;i),E(q;+1),E(i;+l),E(it+,), 

£(ct+1),£(rt
fc

+1), E{qt+i), E(lt+i), E(irt+i), J5(u/t+i)]', 

where the elements 18 to 24 of St correspond to the observables used for identification 

analysis and estimation, which are (we use lower cases to stand for log deviations from the 

respective steady state) output (yt), consumption (ct), investment (it), wage (wt), labor 

hours (It), inflation (7rt) and the interest rate (rt). The other elements correspond to 
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model variables in both sticky and flexible price-wage economies, seven shock processes, 

and twelve expectation terms. See the mathematical appendix for more information on the 

elements of St above. The vector of structural shocks is given by 

Z t  = (r? t°,  i f f ) ' ,  

where, as discussed above, rj? is a technology shock, rft is a risk premium shock, rf t  is an 

exogenous spending shock, rft is an investment shock, rft is a monetary policy shock, r/f 

and r}f price and wage mark-up shocks respectively. The elements of Ct are all zero except 

the last twelve entries that correspond to the one period ahead expectation errors of the 

last twelve terms of St• This implies that II is of dimension 45 x 12, is an identity matrix 

for the last twelve rows, and zero otherwise. The coefficients matrices ro,ri, and are 

functions of the structural dynamic parameters 6, consisting of 

^ =  (Pgai t^wi Mp> V) &ci \  fipi t -wi 4um lpi £pi  &U rm rAyi ryi  Pi Pai Pbi Pgi Pii  Pri  Ppi Pwi 

&ai ® gi  "Vi 0pi  &wi TS Pi  9yi  &wi £pi  ^u;)-

Under conditions that ensure the existence and uniqueness of the solution (see p. 12 in Sims 

(2002)), the system can be represented as 

ST = ©iSt-i + 0o Z T ,  

where 0i and ©o are functions of 6 1, which further implies 

S T  = {I  -  OILY^OZT.  (2.1) 

Prom the above vector moving average representation, we can easily obtain the repre

1 Therefore, a complete notation should be 0o(0) and ©i(0). We omit such a dependence for simplicity. 
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sentation for the observable endogenous variables. To see this, suppose that the observable 

Yt, up to an unknown mean vector, is given by 

(ct - ~ it-\,yt ~ -  w t-i,r t).  (2.2) 

To map this to the solution (2.1), we simply let A(L) be a matrix of finite order 

polynomials that specifies the observables, then we compute 

A(L)S t  = A(L)(I -  ©xL^eoZt (2.3) 

with 

A(L) = 
7x45 

(1 ,1)  

0 

(1,45) 
0 

0 

0 

(1,18) (1,19) (1,20) (1,21) (1,22) (1,23) (1,24) 
1 — L 0 0 0 0 0 0 

0 1 — L 0 0 0 0 

0 0 1 — L 0 0 0 0 

0 0 0 0 

0 0 0 0 1 

0 0 0 0 0 1 -L 0 

0 0 0 0 0 0 1 
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The vector moving average representation (2.3) plays a central role in our analysis. First, 

it enables straightforward computation of the spectrum of Yt: 

Mu) = ̂  (exp(-iw); 0)E(0)(exp(-iw); 9)\ (2.4) 
17T 

where the asterisk denotes the conjugate transpose, 

H(L; 9) = ^(L)(/-©1L)"1e0, 

and Y,(0) is the variance covariance matrix of Z t
2- Second, we can easily compute the 

impulse response functions and the variance decomposition. Third, the choice of A(L) 

offers substantial flexibility as we can vary it to study estimation and inference based on 

different combinations of variables. 

For identification and inference based on the spectrum, there is no need to specify the 

steady state. However, it is also straightforward to incorporate the mean into the analysis. 

To see this, define an augmented parameter vector 9 that includes 9 and parameters affect

ing only the steady state. Then, notice that for log linearized DSGE models the observables 

Yt can typically be related to the log deviations (Yt
d(9)) and the steady states (t*(9)) via 

Y t  = n(9) + Y t
d{6). 

The specification in SW (2007) corresponds to Y t
d(9) given by (2.1) and fi(9) — (7 ,7,7,1,7r, 

7,r)'. The parameters 7, If and F are functions of structural parameters and 7 is a new 

steady state parameter. The detailed discussion is presented in subsection 2.3.2 below. 

2Note that in our code E(0) is a 7 x 7 identity matrix, as we incorporate the shock standard deviations 
into when we set up the dynamic system. 
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2.3 Identification analysis 

In this section we perform identification analysis based on the (first and) second order 

properties of the model, consider identification from a subset of frequencies (business cycle 

frequencies) and implement a robustness check for the results. The corresponding theoreti

cal results have been derived in the previous chapter: see Theorems 1.1-1.2 and Corollaries 

1.2-1.6. We conduct our identification analysis by setting 6o to the posterior mean from 

the Table 1A in SW (2007): 

0O = (0.52,0.88,0.74,0.19,0.54,5.48,1.39,0.71,1.61, 0.59,0.73,0.22,0.65,1.92,2.03,0.22, 

0.08,0.81,0.95,0.18,0.97,0.71,0.12,0.90,0.97,0.45,0.24,0.52,0.45,0.24,0.14,0.24, 

1.0043,0.9984,0.025,0.18,1.5,10,10). 

We choose the above parameter values for illustration purposes and because, given the 

analysis, they are empirically reasonable values. In practice, the same analysis can be 

carried out for other parameter values using the same methodology. 

2.3.1 Analysis of SW (2007) based on the second order properties 

To compute G(6o), the integral in G(6q)  is approximated numerically by averaging over 

10,000 Fourier frequencies from —4,999rr/5,000 to 4,999 t t/5,000 and multiplying by 2ir.  

We keep the step size for the numerical differentiation at 10-7 x 6q, and use the MATLAB 

default tolerance set at tol — max(size(G)eps(||G||)) to decide whether an eigenvalue is 

zero, where eps is the floating point precision of G. We obtain rank(G(#o)) = 36. Since 

the dimension of 6q is 39, this implies that 8 is unidentified at 9q. Additionally, this result 

suggests that a minimum of three parameters needs to be fixed to achieve identification. 

Since the model is not identified, we can proceed to search for the nonidentified subsets 
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of parameters. We find no such one-element subsets of 9 in Step 2. In the next step, we find 

two subvectors that yield G(0o)s with one zero eigenvalue: (£w,ew) and (£p, ep). This finding 

is not surprising, as the parameters in each subset play very similar roles in the model after 

linearization (they determine the speed of adjustment of prices and wages through the 

Calvo probability, or the curvature of demand, respectively) and thus are not separately 

identifiable. SW (2007) recognized that and fixed ep and tw in estimation. Iskrev (2010) 

obtains the same result by applying his condition. We do not report the nonidentification 

curves for these subsets, as they are trivial and are highlighted here for illustration purposes. 

We then exclude all three-parameter subvectors that contain either of the two noniden

tification sets identified above as proper subsets and continue the analysis. We find no 

three- or four-element nonidentification subsets. However, we pinpoint one five-element 

subvector which has one zero eigenvalue: 

(<p, A, 7,  (3,6) 

where tp is the adjustment cost parameter, A (denoted as h in SW (2007)) is the habit 

parameter, 7 governs the steady state growth rate, 0 is the discount rate, and <5 is the 

depreciation rate. This result is also in accordance with Iskrev (2010). After excluding 

all subvectors containing the nonidentification sets highlighted above, we find no further 

sources of nonidentification in this model. Therefore, our findings imply that fixing one 

parameter out of each of (<p, A, 7, 0, <5), (£w, f.w) and (£p, ep) is necessary and sufficient for 

identification from the second order properties. 

We then evaluate the nonidentification curve using the Euler method with step size 

h — 10~4 in a small neighborhood around 8q. The result is presented in Figure 2.1, which 

demonstrates how, for each of <p, A, 7,0 and 5, the parameters have to change simultaneously 
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in order to generate nonidentification. The curve is extended using (1.11) in the two 

directions starting from 6q, which are marked on the graph by the bold and dotted lines 

respectively. It should be noted that (3 is increasing along direction 2. Since it represents 

the discount rate, it cannot be larger than 1. Therefore, we truncate the direction 2 of the 

curve at a point where (3 is closest to 1. This leaves us with only 472 steps in direction 

2, which, compared to 670,000 steps computed for direction 1, is very small and hence in 

the Figure 2.1 values corresponding to direction 2 look like a bold dot rather than a line. 

Given the number of the steps computed, we did not reach the point where natural bounds 

on parameters are violated along direction 1, but it is clear that we would truncate it at a 

point where /? reaches zero, A reaches zero, or 5 reaches 1, whichever happens first. 

To give an illustration of parameter changes involved, we report ten points taken from 

the curve at equally spaced intervals in each direction in Table 2.1. In addition, we report 

the smallest and the second smallest eigenvalues of G(&O)S to show that its rank stays 

constant along the curve. 

To verify that the points on the curve indeed result in identical spectral densities, we 

compute three different measures of the discrepancies between f${u) and fo0(u)) considered 

in the previous chapter: 

Maximum absolute deviation: max | fehli^j) — fe0hi(vj)\ 
u>je n 

„ . L  ,  X J .  . .  • w r m a xw j enl f$hiM -fe0hi(uj)\ 
Maximum absolute deviation in relative form : - r-r 7—7; 

I J$ohl {^j ) I 

Maximum relative deviation: max I fohli^j)—fo0hi(vj)\  ̂  
en |  fe0hi(uj)I 

where /ew(w) denotes the (h, Z)-th element of the spectral density matrix with parameter 9 

and fi is the set that includes the 5,000 frequencies between 0 and 7r3. In order to conserve 

3There is no need to consider u> e [—7r,0] because fe(u>) is equal to the conjugate of fe(-ui). 
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space, we report 8 largest deviations that occur across all 49 elements of G(0)a  computed 

over 5,000 frequencies in descending order for points in Table 2.1. The results can be found 

in Tables 2.2 and 2.3. They show that even the largest deviations are very small. Given 

that there are numerical errors involved in the application of the solution algorithm and 

the computation of the G(9)8 matrix, and that the Euler method involves a cumulative 

approximation error of order 10~4 in our case, we can conclude that the spectrum stays 

the same along the curve. 

2.3.2 Analysis of SW (2007) based on the first and second order properties 

This subsection extends the analysis to incorporate the steady state of the model. The 

measurement equations from SW (2007), relating the observables to the means and the log 

deviations, are as follows: 

dlCONSt = 7 + ct-- Q-l  

dllNVt = 7 + H -- i t-1 

dlGDPt = i  + yt-- yt-i 

IHOURSt = 1 + h 

dlP t  = 7T + 7Tt 

dlWAGt = 7  + w t  • -  w t-1 

FEDFUNDS t  = f + r t ,  

where I and dl stand for 100 times log and log difference, respectively; 7 = 100(7  —  1)> 

¥ = 100(11, - 1), and r — lOO^S^II. - 1) = + 100(/?_17<Tc - !)• Among the 

means, 7 is a function of the dynamic parameter 7,7f and r depend on the common steady 

parameter inflation rate II, and Z is a new parameter. Hence, we can augment 8 by two 
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parameters and the full parameter vector becomes 

0  = (0,7f , 1 ) .  

We have 41 parameters in total and n(0) is given by 

Mi#) -  (% 7,7,1^,7, r)' .  

We set Wo = 0.78 and Jo = 0.53 as in Table 1A in SW (2007). n(6) can be differentiated 

analytically in this case, e.g., using MATLAB's symbolic math toolbox. 

Applying Theorem 1.2 yields rank(G(#o)) = 39. Since now q = 41, the result tells us 

that we cannot identify the parameter vector at 0q from the first and the second order 

properties of the observables, and, furthermore, that two parameters need to be fixed to 

achieve identification. The sources of nonidentification in this case are the two subsets 

we have detected in the previous subsection, namely (£w,ew) and (£p,ep). This result is, 

again, not surprising and should be expected given the similar role the parameters play in 

the model, as discussed in the previous subsection. We no longer detect the (ip, A, 7,/?, S) 

subset as 7 determines the steady state growth rate 7 and hence can be identified from the 

mean. Once 7 is identified, the rest of the four parameters are uniquely determined. Iskrev 

(2010) reaches the same conclusion. Thus, fixing one parameter from each of (£w, ew) and 

(£p, ep) is necessary and sufficient for identification based on the mean and the spectrum. 

2.3.3 Analysis of SW (2007) using a subset of frequencies. 

In this subsection we examine identification from a subset of frequencies. Specifically, 

we focus on business cycle frequencies. We use the conventional definition, i.e., treat all 

frequencies corresponding to periods between 6 and 32 quarters as business cycle frequencies 
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(see, e.g., King and Watson (1996)). We compute both G W (6q)  and G W  (Oq)  to examine 

identification from the second, and first and second order properties of the observables. 

We obtain rank(Glv(0o)) = 36 and rank(GW(0o)) = 39, which coincides with the results 

obtained using all frequencies. All results and conclusions are the same as in the previous 

two subsections. This shows that for this model business cycle frequencies have the same 

local identification power at 6q and Oq as the full spectrum. 

2.3.4 Robustness checks using nonidentification curves 

The results above have been obtained using a particular step size for numerical differenti

ation and the MATLAB default tolerance level for computing the ranks of the G(9) and 

G(9) matrices. Here, we check the sensitivity of G(6o) to a range of numerical differentia

tion steps (from 10~2 to 10~9) and tolerance levels (from 10-3 to 10-10). The results can 

be found in Table 2.4. Although we report the rank sensitivity analysis results only for 

G(9), similar checks have been performed for all of the matrices computed above to ensure 

robustness of the reported rank. 

It can be seen from the chapter that varying the differentiation step can affect the 

rank decision. Specifically, the estimated rank changes if the step size is too large or too 

small, and when the tolerance level is more stringent. This is quite intuitive, as when the 

step size is too large, the numerical differentiation will induce a substantial error, since the 

estimation error for the two-point method is of the same order as the step size. When the 

step size is too small, the numerical error from solving the model using GENSYS will be 

large relative to the step size, therefore the rank will also be estimated imprecisely. In this 

example, the step size le-07x#o and the MATLAB default tolerance level seem to produce 

good balance between precision and robustness. 
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The dependence of the results on the step size and the tolerance level is certainly 

undesirable. To address this issue, we suggested previously that the nonidentification curve 

analysis be embedded into the following two-step procedure to reduce the reliance on step 

size and tolerance level: 

• Step 1. Compute the ranks of G(9q)  using a wide range of step sizes and tolerance 

levels. Locate the outcomes with the smallest rank. 

• Step 2. Derive the nonidentification curves conditioning on the smallest rank re

ported. Compute the discrepancies in spectral densities using values on the curve 

to confirm observational equivalence. If the discrepancies are large, proceed to the 

outcome with the next smallest rank and repeat the analysis. Continue until spectral 

densities on the curve are identical or full local identification is established. 

In applications, it often suffices to compute as few as 10 points on the nonidentification 

curve to establish whether spectral densities are identical or not, as in the latter case the 

deviations become quite large only a few steps away from 0o, so the computational burden 

involved is not large. Applying this procedure using the step sizes and tolerance levels in 

Table 2.4 leads to the same conclusion as stated above. This is because 36 is the smallest 

rank in the Table 2.4 (Step 1) and the discrepancies between f$(u) and f$0(uj) along the 

curves are negligible (Step 2). In summary, this example demonstrates another reason why 

nonidentification curves can be a useful tool for identification analysis. 

2.4 Estimation and inference 

We also consider estimating the model of SW (2007) from a frequency domain perspective. 

We start with briefly summarizing the quasi-Bayesian estimation procedure proposed in 

Section 1.5. 
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2.4.1 The basic framework 

First, we consider the quasi-likelihood functions implied by the linearized DSGE model. 

Under the assumption that the DSGE system is nonsingular (i.e., ny < n£), which is satis

fied by the SW (2007) model, the approximate generalized Whittle log likelihood function 

of 6 based on the sample Yi,..., Yp is given by 

where uij — 2irj/T (j — 1,2, . . .T— 1) denote the Fourier frequencies, W(uij) is the indicator 

function as defined in the identification section, and It (wj) is the sample periodogram. 

Define the discrete Fourier transform of the data by 

then the periodogram can be computed as I t (u>j) — wt (wj) Wt (wj) • Note that maximizing 

Lt (0) allows us to estimate dynamic parameters based on the spectrum of {Yt} without 

any reference to the parameters that only enter the steady state. Also, unlike for time 

domain QML, the estimates can be obtained without demeaning the data, since the values 

of wt (uij) at the Fourier frequencies are not affected by replacing Yt by Yt — 11(9) in the 

definition of wt (u>j) above. 

The extension to estimation of both dynamic and steady state parameters jointly is 

straightforward. Let 

Since Wq t (0) has a multivariate normal distribution with asymptotic variance f$(0) and 

is asymptotically independent of wt (wj) for j = 1,2, ...,T — 1, it can be shown that the 

T—1 

Lt (0) = -  5^ W(ujj) [logdet (fe{uj)) + tr { f e  
1 ( u j ) I T  (wj)}],  
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approximate log likelihood function of 6 takes the form: 

L T ( 0 )  =  L T  ( 6 )  - [logdet (f9(0)) + tr {/„-»(0)I l T  (0)}] . 

Since the direct application of maximum likelihood methods to estimation of DSGE 

models is plagued by the problem where the obtained estimates are often at odds with eco

nomic theory, possibly due to the models' stylized nature and potential misspecification, it 

has become common practice to use Bayesian methods that introduce information not con

tained in the observed sample via reweighting the likelihood by the relevant prior density 

(see An and Schorfheide (2007) for discussion). This motivates us to incorporate prior dis

tributions on the DSGE parameters into our estimation framework following Chernozhukov 

and Hong (2003). 

Specifically, for the dynamic parameter only case, we consider 

where ir(0) can be a proper prior density or, more generally, any weight function that is 

strictly positive and continuous over the parameter space. The function pT(0) is termed 

quasi-posterior in Chernozhukov and Hong (2003), because, while being a proper distribu

tion density over the parameters, it is in general not a true posterior in the Bayesian sense, 

as exp (Lt (6)) is a more general criterion function than the likelihood. The quasi-posterior 

mean, given by 

e 

can be taken as the estimate for #o- Computation of an estimate involves drawing a Markov 

chain S — .. J'B') from the quasi-posterior density using a Markov chain Monte 

?T^ Je n(0) exP (Lt (&)) d0' 

tr(0) exp (L T  (0))  
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Carlo (MCMC) algorithm and computing the mean of the draws 

®t = ̂ ^2 D B ) -
j=1 

(2.5) 

Estimates of a given continuously differentiable function g: © —• R, e.g., an impulse 

response at a given horizon, can be obtained by computing 

In this chapter, we use the popular Random Walk Metropolis algorithm to generate draws 

from pT{6). It belongs to the more general class of Metropolis-Hastings algorithms, the 

first version of which was proposed by Metropolis et al. (1953) and later generalized by 

Hastings (1970). Schorfheide (2000) and Otrok (2001) were the seminal contributions in 

using this algorithm for Bayesian estimation of DSGE models. We use the version of the 

algorithm implemented in Schorfheide (2000). The steps involved and some discussion on 

their practical implementation are presented below. 

• Step 1. Use numerical optimization to maximize Lr (&) + log(7r(0)). The maximizer 

is the posterior mode, denoted 6. 

• Step 2. Obtain the inverse of the Hessian computed at the posterior mode, denote it 

• Step 3. Draw a starting value 0^ from N(0, c2!]), where c is a scaling parameter, or 

specify a starting value directly. 

• Step 4. For s = 1,2draw i? from the proposal distribution 

Accept the draw (6^ — •d) with probability min{l, | F)} and reject it 

1 B 

90T) = ̂  
j= 1 

(2.6) 

E. 
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= 0(®-1)) otherwise. The acceptance probability is 

a(0 ( ,- ! ) ,0 |  Y) = 
exp(Lr (t?))7r(i?) 

exp (Lr(0(s-1))) 7r(0(s_1)) 

• Step 5. Compute the posterior mean estimates as in (2.5) and (2.6). 

In Step 1, one of the practical problems that may be encountered by an optimization 

algorithm is the possible lack of existence or uniqueness of the solution for the DSGE 

model. To circumvent these issues, we use the csminwel optimization routine written by 

Chris Sims (see Leeper and Sims (1994)), which randomly perturbs the search direction if 

it reaches a cliff caused by indeterminacy or nonexistence. Regarding the prior, we use the 

same n(6) as in the Table 1A in SW (2007). 

In Step 2, the Hessian matrix, computed assuming Normality, has its (j, l)-th element 

given by 

which can be estimated by replacing the integral with an average over the Fourier frequen

cies. 

In Step 4, the choice of the scaling parameter c is determined by calibrating the ac

ceptance rate of the Markov chain. Roberts et al. (1997) suggested a heuristic rule to 

use proposal distributions with an acceptance rate close to 25% for models of dimension 

higher than two under the assumption that both the target and the proposal distribution 

are Normal. Since this assumption is not satisfied in our case, we follow the literature by 

drawing several Markov chains with acceptance rates between 25% and 40%. Therefore, 

while keeping the seed of the random number generator fixed, we try a range of values 

for c until we find one that yields the desired acceptance rate. In our experience, for a 

— TT 
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given c and a random number generator seed, computing the acceptance rate of a chain of 

1,000-5,000 draws gives a good idea about what to expect from a much longer chain. Also, 

we may draw •d that yield indeterminacy or nonexistence of the DSGE solution, or contain 

parameter values that violate the specified bounds (our bounds are as in the Dynare code 

of SW (2007)). In such cases, we set LT(0) + log(7r(#)) to a very large negative number 

(—lelO) so that such draws are always rejected. 

We first perform estimation of 0 based jointly on the mean and the full spectrum of 

observables, as this closely mirrors the analysis of SW (2007) conducted from a time domain 

perspective. In order to enhance comparability of results, five parameters are kept fixed in 

estimation, as in SW (2007), at the following values 

£p — tw ~ 10,<5 = 0.025, gy = 0.18, Xw — 1.5. 

2.4.2 Estimation based on the mean and the full spectrum 

The data we use is that used in SW (2007) and we consider the same sample period as in 

their Dynare code, namely (Q1 1965 - Q4 2004). The prior distribution is kept the same 

as in SW (2007) and is presented in Table 2.5. For each Markov chain, a sample of 250,000 

draws from the posterior distribution is generated, and the first 50,000 draws are discarded 

as burn-in. We report results for c — \/0.15 as the scaling constant, which resulted in the 

acceptance rate of 24%4. It should also be noted that the theoretical spectral density at 

frequency zero is singular, because the observables contain first differences of stationary 

variables. Computationally, we deal with this problem by using the generalized inverse to 

calculate fgl(0) and the product of nonzero eigenvalues of fo(0) to obtain det (fg(0)). For 

ease of comparison, we report the results for the former case alongside those obtained in 

4Here and below we used several scaling factors yielding the acceptance rates between 25% and 40%, 
and found that the results are not sensitive to these changes. 



www.manaraa.com

96 

SW (2007) in Table 2.6. 

Overall, the parameter estimates in Table 2.6 are very similar to their counterparts 

in SW (2007). The posterior means and modes are close. The 90% probability intervals 

overlap for 38 out of the 41 parameters. The two exceptions are that our estimate of the 

technology shock persistence (pa) is higher (0.98 compared to 0.95 in SW (2007)), while the 

estimated persistence parameter of the exogenous spending shock (pg) is lower (0.92 versus 

0.97). For these two parameters the corresponding 90% probability intervals are disjoint. 

We can also single out a somewhat higher estimate of the elasticity of consumption oc (1.81 

compared to 1.38), although there is still slight overlap in the 90% intervals, and a lower 

estimate of the trend growth rate (7) of 0.27 versus 0.43 in SW (2007). 

2.4.3 Estimation based on the full spectrum 

We now perform estimation of 6 based on the full spectrum of observables. We consider 

the same data set, prior, and MCMC algorithm, except we choose c = 0.4, which produced 

an acceptance rate of 23%. The results are reported in Table 2.7. 

Overall, the parameter estimates in Table 2.7 are very similar to those based on the 

mean and the full spectrum. The estimated trend growth rate is back in line with the 

results of SW (2007), but the estimated mean discount rate goes up from 0.76% to 1.04% 

on an annual basis. The rest of the estimates obtained using the full spectrum are virtually 

the same as those in Table 2.6. We can also see that overall the estimation results using 

the full spectrum are, as would be expected, very close to those obtained by SW (2007) 

using time domain methods. 
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2.4.4 Estimation using business cycle frequencies 

DSGE models are constructed to explain business cycle movements. Schorfheide (2011) 

emphasized that "many time series exhibit low frequency behavior that is difficult, if not 

impossible, to reconcile with the model being estimated. This low frequency misspecifi-

cation contaminates the estimation of shocks and thereby inference about the sources of 

business cycle". Therefore, it is instructive to consider in what way if any the estimates 

change when the estimation is carried out using business cycles frequencies only. Our pro

cedure allows for such an investigation. We use the same methodology as in the previous 

subsection to perform estimation of dynamic parameters, selecting only the frequencies 

corresponding to cycles of 6 to 32 quarters and changing the variance tuning parameter to 

c = \/0.13 , which results in an acceptance rate of 23%. The results are reported in the 

right panel of Table 2.7. 

We find that a number of parameter estimates differ substantially from those obtained 

using the full spectrum. The most notable differences pertain to the parameters govern

ing the exogenous shocks. Specifically, the AR coefficient of the total factor productivity 

process, pa, drops from 0.98 to 0.84 while the standard deviation of its shock remains 

unchanged. The parameter governing the impact of productivity shocks on exogenous 

spending, pga, is almost halved from 0.47 to 0.24. Additionally, the AR coefficient of the 

wage mark-up process pw comes down from 0.96 to 0.56 and its MA coefficient fiw drops 

from 0.92 to 0.32. The standard deviation of its shock decreases but the two posterior in

tervals overlap. On the other hand, the AR coefficients for risk premium (pi,) and monetary 

policy (pT) shocks rise from 0.21 to 0.75, and from 0.09 to 0.34 respectively. The standard 

deviations of the respective shocks decrease from 0.24 and 0.24 to 0.08 and 0.13, respec

tively. The parameter differences outlined above are significant in the sense that their 90% 
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probability intervals do not overlap. For the remaining three shock processes, exogenous 

spending, monetary policy and price mark-up, the magnitudes of the AR and MA coeffi

cients either remain the same or show a small decrease, while the standard deviations of 

these shocks become smaller. Other notable differences in estimated parameters include 

the adjustment cost elasticity (ip), which goes down to 3.03 from 5.76, the degree of price 

indexation (ip), which increases from 0.21 to 0.61, and the coefficient on the lagged interest 

rate (p), which goes down from 0.85 to 0.76. These results imply that the model estimated 

using business cycle frequencies will potentially deliver different impulse responses from 

those obtained using the full spectrum. We explore this issue in the next section. 

2.5 Impulse response analysis 

Motivated by the differences found between parameter estimates obtained using the full 

spectrum and business cycle frequencies, we estimate the impulse response functions of the 

seven observables to the shocks for the two cases. Figures 2.2 through 2.8 report the poste

rior means, along with the 90% posterior intervals for horizons of up to 20 quarters. Each 

figure corresponds to a single observable. One notable difference between the responses of 

nearly all of the variables to a risk premium shock is that the impulse responses obtained 

using business cycle frequencies display a hump shaped dynamic, as opposed to an almost 

monotonic decay of those obtained using the full spectrum, as well as those in SW (2007). 

One exception is wage, where the impulse response with the full spectrum is itself somewhat 

hump shaped, but still the hump shaped pattern of the business cycle impulse response is 

much more pronounced. In all other cases it appears that the effects of both exogenous 

spending and investment shocks are in general significantly less pronounced when business 

cycle frequencies are used for estimation, perhaps with the exception of an investment 
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shock to inflation and an exogenous spending shock to consumption and wage, for which 

the differences are not as clear cut. The effect of a wage mark-up shock dies out faster for 

all variables if estimated using business cycle frequencies. Its effects are also significantly 

less pronounced after about 5 quarters for consumption and wage, sifter 10 quarters for 

output and labor hours, and for the whole 20 quarters for inflation and interest rate. It is 

interesting to note that the business cycle impulse response of investment to this shock is 

more pronounced initially for about five quarters, but then goes to zero faster after about 14 

quarters. The monetary policy shock also has smaller impact and goes to zero faster. Little 

difference can be observed when considering the responses to the price mark-up shock, as 

the two posterior intervals mostly overlap for the whole 20 quarters. However, responses 

become less pronounced and decay faster for consumption after roughly 10 quarters, and 

for output and labor hours after 15 quarters. The responses to the productivity shock are 

also very similar to the full spectrum case, except for the cases of output, consumption 

and wage, for which the response is lower and decaying faster in the case of business cycle 

frequencies. 

It is important to ask whether the difference is due to the impact of the prior, which 

has a greater effect in the business cycle frequency case as some information from the data 

is discarded. We address this as follows. First, we compute the value of the log likelihood 

constructed using the business cycle frequencies, but at the parameter values estimated 

using the full spectrum. Then, we compare this value with the same likelihood function 

computed using the estimates from business cycles. The results are reported in Table 2.8. 

If the difference were in fact driven by the prior, then the latter would be smaller or of 

similar magnitude to the former. The result suggests otherwise. Similarly, we evaluate the 

log likelihood function constructed using the full spectrum at the business cycle estimates 
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and compare with that at full spectrum estimates. The difference is even more pronounced. 

Overall, the result suggests that estimates obtained from business cycle frequencies do a 

good job at matching these frequencies, but are at odds with other frequencies, in this case 

the very low frequencies. 

Since the above analysis omits frequencies from both sides of the business cycle fre

quency band, it leaves unclear which components are driving the difference. To investigate 

this, we consider estimation omitting only frequencies below the business cycle band. Fig

ures 2.9 to 2.15 contain the impulse responses for this case. The estimates from the business 

cycle case are also included to ease the comparison. The figures show that results are over

all similar to those using business cycle frequencies. Therefore, most of the differences 

observed between the impulse responses computed using the full spectrum estimates and 

those using business cycle frequencies can be attributed to the omission of the frequencies 

below the business cycle band. There are a few deviations from this pattern. The hump 

shaped responses of all seven variables to the risk premium shock observed in business 

cycle results are no longer present. The same can be noted about the initial few quarters 

of responses of inflation to the productivity and the price mark-up shocks, as well as of 

wage to the price mark-up shock. 

2.6 Model diagnostics from a frequency domain perspective 

King and Watson (1996) compared the spectra of three quantitative rational expectations 

models with that of the data. The models were calibrated and of small scale. Below, we 

carry out similar analysis for the medium scale DSGE model considered here. The goal 

of the analysis is two-fold. First, we examine whether the model captures the variability 

of and the comovements between relevant macroeconomic variables. Second, we compare 
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the model spectrum estimated using all frequencies with that using only business cycle 

frequencies. The latter will highlight the potential value from using a subset of frequencies 

in estimation. 

We obtain nonparametric estimate of the spectral density by smoothing the peri-

odograms using demeaned data. Suppose Yt contains only one variable. Then, the es

timator is given by 

f{uj) = Yh WT(fc)/r(u;j+fc) for j > 1 
|A;|<m 

and 
m 

7(0) = Wt(0)ItM + 2^Wr(fc)/r(wj+fe), 
k= 1 

where m is a positive integer, Wr(A;) is a weight function satisfying Wr(fc) = Wr(-fc), 

Wr(k) > 0 V k, Y,\k\<m Wr(k) — 1 and is the periodogram of the data. The 

estimator is consistent under mild conditions (see Brockwell and Davis (1991) for a rigorous 

treatment) and the asymptotic 95% confidence intervals for the estimates of the log of 

spectral density are given by 

log(7(^)) ± 1.96 ( Y, Wfc)2 

We apply the same type of estimator to obtain absolute coherency between pairs of vari

ables. Let Yt be a bivariate demeaned time series. The spectral density matrix is estimated 

in the same way as above but with Iri^j+k) being a 2 x 2 matrix. Let fhki^j) denote 

the (h, /c)-th element of then the absolute coherency estimate (|£i2(wj)|) between Y\ t  

and Yit is 

|S,2(w,)| = [3?2(W,) +&(^)|1/V[/n("j)&M1/2, 
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where 

C 1 2  ( w j )  =  [ f n ( u j )  +  h \ { u j ) ] / 2 ,  

q n ( w j )  = i[/i2(wj) -/2i(wj)]/2. 

The approximate 95% confidence bounds can be computed as follows 

1^2(^)1 ± 1.96(1 - |^12(^)|2) ( Y, Wr(A:)2) /y/2. 
\|fc|<m / 

In applications, the choice of Wx(k) depends on the characteristics of the data series at 

hand. It is possible and sometimes advantageous to use different weighting functions for 

estimation of different elements of the spectral density matrix due to potentially different 

features of the time series (see Ch. 9 in Priestley (1981) for a discussion). In our case, 

we apply the same weight function in all estimations, with m = 4 and the weights given 

by fx, ji, ji, ji} » which is obtained by the successive application of 

two Daniell filters with weights given by { 3 ,  g, 5} and This choice of 

Wr(k) produces spectra estimates that are not as rough as the raw periodogram, and in 

the meantime do not appear oversmoothed. 

Figure 2.16 plots the log spectra of the seven variables. Three results are reported 

in each sub-figure. First, we report the nonparametric estimates of the spectrum of the 

demeaned data series along with the pointwise 95% confidence intervals. They are used as 

a benchmark to assess the model's ability in capturing these key features. The solid curve 

is the spectrum implied by the model with parameters estimated using the full spectrum. 

The dashed line is the model spectrum with business cycle based estimates. Two patterns 

emerge. First, the solid curve captures the overall shape of the data spectrum, although 

there are noticeable departures which often occur inside of the business cycle frequencies. It 
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should be noted that for the growth series (sub-figures i-iii,vi), the model implies that their 

spectral density at frequency zero is zero (as the figure reports log spectra, the frequency 

zero is omitted from the figures). This is inconsistent with the data spectra, which are 

positive at the origin. When frequencies very near zero are included in the estimation, 

the model will try to reduce such a departure by having very persistent estimates. This 

potentially affects the other frequencies, which partly explains why the full spectrum based 

estimates do not capture the slope of the spectrum very well inside of the business cycle 

frequencies. When using only business cycle frequencies for estimation, such a tension is 

absent and the estimates do a better job at matching variations at these frequencies. The 

lines never fall substantially outside of the confidence bands. However, the departures from 

the data spectrum can be substantial outside of the business cycle frequencies. In practice, 

this offers the researcher a choice. If one firmly believes that the DSGE model is well 

specified at all frequencies, then, they should all enter the estimation and the estimates 

will be more efficient. If one suspects that the modeling of the trend, or, more generally, of 

the very low frequency behavior in the model is inconsistent with the data (for example, 

the data has a broken trend while the model has a linear trend), then the subset based 

approach may be a more robust choice. 

Figures 2.17 to 2.19 report the absolute coherency between the seven variables. Notice 

that their values can be interpreted as a measure of strength of correlation at a particular 

frequency. Both the business cycle and the full spectrum based estimates achieve something 

at capturing their overall magnitudes, with the exception of the comovements between 

interest rate and other four variables (consumption growth, investment growth, output 

growth, and labor hours). In the latter case, the two estimates are close and are consistently 

below the nonparametric estimates. This unanimous finding suggests a dimension along 
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which the model can be further improved. For the other cases, the business cycle based 

estimates typically do a better job at the intended frequencies. They largely stay within 

the confidence intervals, and are better at capturing the peaks of the coherency, while the 

full spectrum based estimates miss them in the majority of cases. 

In summary, the DSGE model does a reasonable job at matching the spectra of individ

ual time series and the absolute coherency implied by the data. The subset based estimates 

offer the flexibility to focus on a particular frequency band and to achieve a better fit at 

such frequencies. In practice, both analyses can be carried out, allowing us to assess to 

what extent the results are driven by the very low frequencies. 

2.7 Conclusion and discussion 

This chapter has considered identification, estimation and inference in medium scale DSGE 

models using SW (2007) as an illustrative example. A key element in the analysis is that we 

can focus on part of the spectrum. For identification, we derived the nonidentification curve 

to reveal which and how many parameters need to be fixed to achieve local identification. 

For estimation and inference, we compared estimates obtained using the full spectrum with 

those using only business cycle frequencies and reported notably different parameter values 

and impulse response functions. Further analysis shows that the differences are mainly due 

to the frequencies below the business cycle frequency band. We have also considered model 

diagnostics by contrasting the model based and the nonparametrically estimated spectra 

as well as examining the absolute coherency. The result suggests that SW (2007) does a 

reasonable job at matching these two features observed in the data, with the exception 

of the comovements between interest rate and other four variables (consumption growth, 

investment growth, output growth, and labor hours). The subset based estimates, due to 
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their ability to focus on a particular frequency band, achieve a better fit at such frequencies. 

Prom a methodological perspective, the results contribute to the relatively sparse lit

erature that exploits the advantage of model estimation and diagnostics using a subset of 

frequencies. Engle (1974) is a seminal contribution. It proposed band spectrum regression 

as a way to allow for frequency specific misspecification, seasonality, measurement errors, 

and to obtain better understanding of some common time domain procedures such as ap

plying a moving average filter. Sims (1993) and Hansen and Sargent (1993) considered the 

effect of removing or downweighting seasonal frequencies in estimating rational expecta

tions models. Diebold, Ohanian and Berkowitz (1998) discussed a general framework for 

loss function based estimation and model evaluation. In a different context, McCloskey 

(2010) considered parameter estimation in ARMA, GARCH and stochastic volatility mod

els robust to low frequency contamination caused by a changing mean or misspecified trend. 

Qu and Tkachenko (2012) provided a comprehensive treatment of the theoretical and com

putational aspects of the frequency domain quasi-likelihood applied to DSGE models. By 

working through a concrete example, this chapter demonstrates that such an approach is 

applicable to medium scale DSGE models and that it offers substantial depth and flexibil

ity when compared with time domain methods. We intend to apply the methodology to a 

relatively broad class of DSGE models and hope to report results in the near future. 

2.8 Mathematical appendix 2 

The numbering of the equations below corresponds to SW (2007). Subscript star denotes 

steady state values. Note that some parameters are expressed as functions of the structural 

parameters. We highlight such relationships when relevant. 
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2.8.1 The sticky price-wage economy 

1. The resource constraint is 

yt Cyfy iyi't ZyZt ~f~ . 

Output (yt) divides into consumption (q), investment (it), capital utilization costs 

as a function of the capital utilization rate (Zt), and exogenous spending (ef). The 

coefficients Cy, iy and zy are functions of the following structural parameters. 

9yi 7i °c, 0p> &• 

Their relationship to the coefficients above is: 

i y  ( 7  —  1  +  S ) k y ,  

where ky is the steady state capital-output ratio, and R* is the steady state rental 

rate of capital (see the Appendix to SW (2007)): 

2. The dynamics of consumption follow from the consumption Euler equation 

c t  = cict-i + (1 - ci)E tc t+i + c2(lt ~ E tlt+i) - c3(r t  - E tTT t+i + 4) = 

Cy ~ 1 9y iy 

•* i 

with 
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= cict-i + (1 — c\)EtCt+i + C2(h — Etlt+i) — c${rt — Etitt+i) — ^t• 

Here the basic parameters are 

A, 7» ^ 

and some parameters in the resource constraint (1). Their relationship to the coeffi

cients above is: 

A/7 (ac ~ 1) (tujL./c.) 1 - A/7 
01 1 + A/7'C2 <XC(1 + A/7) 'C3 (1 + A H)AC' 

where w^Lt/ct are related to the steady state and are given by 

^L,/c, = -l—Rtky-, 
(pyj & Cy 

where R, and ky are defined as above, and 

C y  =  1  ~  9 y  ~  ( l  ~  1  +  < 5 ) f c y .  

It seems that 

<t>w — instead of 1 + Xw. 

In the code, is redefined as eh
t, that is 

c t  — c\Ct~ i + (1 — c\)EtCt+\ + C2(lt — Etlt+i) — C3(r t  — E t-Kt+i) — £*• 

Therefore the equation 4 (below) is also redefined accordingly. 

3. The investment Euler equation is given by 

i t  — i\it-1 + (1 — ti) E ti+1 + iiqt + ej. 
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The basic parameters are 

0n,<rc,<P-

i i and 12 are related to them as 

1 
ii = T~r~^~Tr~rr>l2 1  +  '  ( l  +  ̂ 7 - y 2 y j  

4. The value of capital is given by 

It  = q\Etqt+i + (1 - 9i) £trf+1 - (rf - E tn t+i + £*) . 

The basic parameters are 

fit *y* &ci 

and parameters determining Ft*. Their relationship to the coefficient above is: 

Note that the code is programmed using 

1 - 5  
91 ~ R* + 1 -S' 

Because of the redefinition of e\, this equation appears as 

q t  = qiE tq t+i + (1 - qi) E tr^x - (r t  - n t+l) - — eb
t, 

c3 

where 

l - A / 7  
c3 - (1 + A/7) CTc 
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5. The aggregate production function is 

Vt = 4>p (<*** + (1 - «) h + £?) • 

The basic parameters are 

6. Current capital service use is a function of capital installed in the previous period 

and the degree of capital utilization 

ks
t = k t-i + z t. 

7. Degree of capital utilization is a positive fraction of the rental rate of capital 

Z t  -  Z X T t ,  

where 

I  — i p  zi = —;—• 
iP 

The basic parameter is rjj. 

8. Households rent capital services to firms and decide how much capital to accumulate 

given the capital adjustment cost they face. The accumulation of installed capital is 

given by 

k t  =  k \ k t ~ i  +  ( 1  —  k i )  i t  +  

where 

ki = *2 = ~ (X + Pi(1 
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9. Price mark-up or the real margined cost is 

= <*(kt ~ lt) +e? ~ wt-

10. The New Keynesian Phillips curve is given by 

TTt = 7Tl7rt-l + ~ 7T3^f + £?, 

where 

= TTTTirr.^ 
0-fll-rc) 

7T3 --

1 + 1 +/iM1-£rcUp' 

i  (i-^7 ( 1~g c )eP)(i-^P)  
l + ^7(1_orcUp £p ((0p - 1) £p + 1) 

Besides the basic parameters defined above, we have in addition 

'-pi £pi £p-

11. The rental rate of capital is 

r t  =  -  ( K  -  h )  +  w t -

Note that in the original paper kt instead of kf shows up. It is likely a typo, as in 

t h e i r  D y n a r e  c o d e  S W  ( 2 0 0 7 )  h a v e  k f .  

12. Labor is differentiated by a union. The wage mark-up is 

H? = w t  - ̂ (Tilt + Y~\ (Cf ~~ • 

A new basic parameter is 

o\. 
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13. Real wage adjusts slowly due to the rigidity 

w t  = wiw t^i + (1 - Wi) (E tw t+1 + E tn t+i) - w2^t + w^t-i ~ 

where 

m ~ 1 + /?7(1-^)'U'2 i + /?70- * c )  > W z  i  +  f r i i - * c ) >  

W 4  l +/3^ l-a^ £w((4>w- l)ew  + l) 

New basic parameters are 

^Wl £ut 1 4>wi E w' 

14. The empirical monetary policy reaction function is 

r t  = pr t-i + (1 - p) {r^wt + rY (y t  -  y t ) )  +  rAy [ ( y t  ~  Ii t )  -  ( y t -1 -  y t - i ) ]  +  £  

The new basic parameters are 

P, rn,rY,r/\y. 

The shocks are (all AR and MA coefficients are basic parameters): 

15. 

ea
t = paeti + r)a

t, 

T 

16. 

e\ = pb£b
t-i + vt 

17. 

4 = Pg£t-i + Pgant + Vt> 



www.manaraa.com

112 

18. 

e\  =  Pi£f—i +  v l  

19. 

e[ = pr£r
t-1 +T1L 

20. 

= Pv t̂-1 *7? ~  P p t f t - 1) 

21. 

ef = PweT-i+riT ~ ̂ wVT~i-

2.8.2 The flexible price-wage economy 

For the flexible price-wage economy, the equations are essentially the same as above, 

but with the variables /if and set to zero. The shock processes are also the same, thus 

we do not repeat them here. 

1. The resource constraint: 

2It  =  Cj/C* +  Vt  + ZyZ* + e?.  

2. The dynamics of consumption follow from the consumption Euler equation 

ct = cict-i + (! - c,)E tc' t+l + c2(l* t  - E tl*+i) - c3(r* - 0) - eb
t. 

Note that the expected inflation is zero because the price adjusts instantaneously. 
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3. The dynamics of investment come from the investment Euler equation 

i* = hit-i + (1 - h) E ti\i + t29* + £t-

4. The corresponding arbitrage equation for the value of capital is given by 

= qiEtqj+i + (1 - Qi) Etrfa - (r? - 0) - -j-ej. 
c3 

The expected inflation is zero for the same reason as above. 

5. The aggregate production function is 

y * t = c t > p ( a k r  +  ( l - a ) r t + e t ) .  

6. Current capital service use is a function of capital installed in the previous period 

and the degree of capital utilization 

kr = kU 4- zl 

7. The degree of capital utilization is a positive fraction of the rental rate of capital 

z* t  = z ir;k. 

8. The accumulation of installed capital is 

fct* = *!*;_! + (1 - fciK + fc24 

9. Because $ — 0 and the relationship with rigidity is:^f —  a  ( k f  —  l t )  +  e f  —  W t ,  we 

have 

0 = a(kf - lt) + £t ~ wt 
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or, equivalently, 

a r * t
k  +  ( l - a ) w ;  =  e l  

There is no New Keynesian Phillips curve as price adjusts instantaneously. 

10. The rental rate of capital is 

11. The wage mark-up is now fif = 0. Therefore, 

0 = w* t  - (a ti; + ̂  (c; - A<£_,)) , 

or 
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2.9 Supplementary materials appendix 2 

Table 2.1: Parameter values and the corresponding two smallest eigenval
ues along the nonidentification curve 

A 7 P 6 Ai A2 
0o 5.740000 0.710000 1.004300 0.998400 0.025000 1.80E-10 0.392865 

Panel (a) . Direction 1 
0i 12.417476 0.482721 0.682812 0.862248 0.337109 1.96E-14 0.808082 
02 19.113813 0.389080 0.550356 0.794406 0.465700 4.57E-14 1.210705 
03 25.812574 0.334809 0.473589 0.750327 0.540228 3.01E-14 1.599268 
04 32.512006 0.298325 0.42198 0.718141 0.590328 5.53E-15 1.975594 
05 39.211698 0.271647 0.384246 0.693026 0.626964 3.26E-15 2.341212 
06 45.911511 0.25105 0.35511 0.672563 0.655256 8.58E-15 2.697239 
07 52.611389 0.234516 0.331724 0.655380 0.677954 1.04E-14 3.044732 
08 59.311305 0.220873 0.312427 0.640622 0.696688 4.10E-15 3.384357 
09 66.011244 0.209364 0.296147 0.627727 0.712493 5.40E-15 3.716722 
010 72.711198 0.199485 0.282174 0.616303 0.726059 9.96E-16 4.042423 

Panel (b) . Direction 2 
0-1 5.735346 0.710288 1.004707 0.998556 0.024605 5.27E-12 0.392485 
0-2 5.730692 0.710576 1.005115 0.998711 0.024209 3.00E-12 0.392186 
0-3 5.726038 0.710865 1.005523 0.998865 0.023812 2.95E-11 0.391895 
0-4 5.721384 0.711154 1.005933 0.999019 0.023415 3.93E-11 0.391616 
0-5 5.716730 0.711444 1.006342 0.999173 0.023018 9.91E-11 0.391323 
0-6 5.712077 0.711732 1.006752 0.999328 0.022620 1.12E-10 0.391078 
0-7 5.707423 0.712023 1.007162 0.999483 0.022221 8.78E-11 0.390749 
0-8 5.702770 0.712314 1.007573 0.999638 0.021823 8.39E-11 0.390467 
0-9 5.698117 0.712605 1.007984 0.999793 0.021423 1.97E-10 0.390278 
0-10 5.693464 0.712896 1.008396 0.999948 0.021024 1.13E-10 0.389814 
Note. 6j represent equally spaced points taken from the nonidentification curve extended from 
00 for 670,000 steps in direction 1, and for 472 steps in direction 2. X\ and A2 represent the 
smallest and the second smallest eigenvalues of G(&,)". The step size for computing the curve 
is 10~4. Along direction 1, the curve is truncated at the point where /3 is closest to 1, as it 
is the discount factor. Results are rounded to the nearest sixth digit to the right of decimal. 
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Table 2.2: Deviations of spectra across frequencies (direction 1) 

8 largest deviations across frequencies and elements in descending order 
1 2 3 4 5 6 7 8 

01 
02 

03 

05 
06 
07 
08 
09 
010 

0i 
02 

03 
04 

05 
06 
07 

08 
09 
010 

8.99E-05 
1.17E-04 
1.31E-04 
1.38E-04 
1.43E-04 
1.47E-04 
1.49E-04 
1.51E-04 
1.52E-04 
1.53E-04 

2.98E-05 
3.88E-05 
4.31E-05 
4.57E-05 
4.74E-05 
4.85E-05 
4.94E-05 
5.01E-05 
5.06E-05 
5.10E-05 

Maximum absolute deviations across frequencies 
09E-05 9.24E-06 1.24E-05 

1.61E-05 
1.79E-05 
1.90E-05 
1.97E-05 
2.02E-05 
2.05E-05 
2.08E-05 
2.10E-05 
2.12E-05 

1.24E-05 
1.61E-05 
1.79E-05 
1.90E-05 
1.97E-05 
2.02E-05 
2.05E-05 
2.08E-05 
2.10E-05 
2.12E-05 

1.09E-05 
1.42E-05 
1.59E-05 
1.68E-05 
1.74E-05 
1.78E-05 
1.81E-05 
1.83E-05 
1.84E-05 
1.86E-05 

42E-05 
59E-05 
68E-05 
74E-05 
78E-05 
81E-05 
83E-05 
84E-05 
86E-05 

1.20E-05 
1.33E-05 
1.41E-05 
1.46E-05 
1.50E-05 
1.53E-05 
1.55E-05 
1.56E-05 
1.58E-05 

24E-06 
20E-05 
33E-05 
41E-05 
46E-05 
50E-05 
53E-05 
55E-05 
56E-05 
58E-05 

7.81E-06 
1.02E-05 
1.13E-05 
1.20E-05 
1.24E-05 
1.27E-05 
1.29E-05 
1.31E-05 
1.33E-05 
1.34E-05 

Maximum 
5.33E-06 
6.93E-06 
7.73E-06 
8.18E-06 
8.48E-06 
8.68E-06 
8.82E-06 
8.91E-06 
8.98E-06 
9.05E-06 

absolute deviations across frequencies in relative form 
4.60E-06 
5.98E-06 
6.70E-06 
7.07E-06 
7.31E-06 
7.50E-06 
7.63E-06 
7.71E-06 
7.79E-06 
7.85E-06 

4.34E-06 
5.66E-06 
6.32E-06 
6.69E-06 
6.93E-06 
7.09E-06 
7.21E-06 
7.28E-06 
7.34E-06 
7.40E-06 

4.19E-06 
5.47E-06 
6.13E-06 
6.49E-06 
6.71E-06 
6.86E-06 
6.96E-06 
7.07E-06 
7.12E-06 
7.18E-06 

3.73E-06 
4.86E-06 
5.41E-06 
5.73E-06 
5.93E-06 
6.07E-06 
6.18E-06 
6.25E-06 
6.31E-06 
6.36E-06 

3.73E-06 
4.86E-06 
5.41E-06 
5.73E-06 
5.93E-06 
6.07E-06 
6.18E-06 
6.25E-06 
6.31E-06 
6.36E-06 

34E-06 
39E-06 
89E-06 
18E-06 
37E-06 
50E-06 
59E-06 
61E-06 
66E-06 
71E-06 

Maximum relative deviations across frequencies 
01 5.94E-05 5.94E-05 2.67E-05 2.67E-05 1.52E-05 1.52E-05 1.37E-05 1.37E-05 
02 7.75E-05 7.75E-05 3.49E-05 3.49E-05 1.99E-05 1.99E-05 1.79E-05 1.79E-05 
03 8.65E-05 8.65E-05 3.91E-05 3.91E-05 2.23E-05 2.23E-05 2.00E-05 2.00E-05 
04 9.16E-05 9.16E-05 4.14E-05 4.14E-05 2.36E-05 2.36E-05 2.12E-05 2.12E-05 
05 9.48E-05 9.48E-05 4.28E-05 4.28E-05 2.44E-05 2.44E-05 2.20E-05 2.20E-05 
06 9.71E-05 9.71E-05 4.38E-05 4.38E-05 2.49E-05 2.49E-05 2.24E-05 2.24E-05 
07 9.88E-05 9.88E-05 4.45E-05 4.45E-05 2.53E-05 2.53E-05 2.28E-05 2.28E-05 
08 9.99E-05 9.99E-05 4.49E-05 4.49E-05 2.55E-05 2.55E-05 2.30E-05 2.30E-05 
09 1.01E-04 1.01E-04 4.54E-05 4.54E-05 2.56E-05 2.56E-05 2.32E-05 2.32E-05 
010 1.02E-04 1.02E-04 4.58E-05 4.58E-05 2.58E-05 2.58E-05 2.34E-05 2.34E-05 
Note. 0j to 0io are as defined in Table 2.1. We report 8 largest deviations across 49 
elements of each G(0i)s computed at 5,000 frequencies to conserve space. 
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Table 2.3: Deviations of spectra across frequencies (direction 2) 

8 largest deviations across frequencies and elements in descending order 
1 2 3 4 5 6 7 8 

Maximum absolute deviations across frequencies 
9_ -l 1.59E-07 3.14E-08 3.14E-08 3.09E-08 1.77E-08 1.77E-08 1.65E-08 1.65E-08 
9. -2 2.38E-07 6.50E-08 4.93E-08 4.93E-08 2.33E-08 2.33E-08 2.27E-08 2.27E-08 
9. -3 3.54E-07 1.14E-07 5.52E-08 5.52E-08 3.80E-08 3.80E-08 2.59E-08 2.59E-08 
9. -4 5.88E-07 1.68E-07 8.09E-08 8.09E-08 7.20E-08 7.20E-08 5.26E-08 5.26E-08 
9. -5 8.55E-07 2.42E-07 1.12E-07 1.12E-07 1.07E-07 1.07E-07 8.22E-08 8.22E-08 
9. -6 1.08E-06 3.11E-07 1.34E-07 1.34E-07 1.24E-07 1.24E-07 8.90E-08 8.90E-08 
9_ -7 1.32E-06 3.76E-07 1.82E-07 1.82E-07 1.54E-07 1.54E-07 1.39E-07 1.39E-07 
9. -8 1.40E-06 4.11B-07 1.83E-07 1.83E-07 1.62E-07 1.62E-07 1.30E-07 1.30E-07 
9. -9 1.44E-06 4.42E-07 1.80E-07 1.80E-07 1.62E-07 1.62E-07 1.18E-07 1.18E-07 
9. -10 1.47E-06 4.57E-07 1.80E-07 1.80E-07 1.71E-07 1.71E-07 1.17E-07 1.17E-07 

Maximum absolute deviations across frequencies in relative form 
9. -l 2.24E-08 1.54E-08 1.36E-08 1.16E-08 1.07E-08 9.44E-09 7.97E-09 7.78E-09 
9 . -2 4.52E-08 3.14E-08 2.63E-08 1.82E-08 1.65E-08 1.56E-08 1.51E-08 1.51E-08 
9. -3 4.03E-08 2.96E-08 2.82E-08 2.75E-08 1.81E-08 1.48E-08 1.45E-08 1.45E-08 
9. -4 4.37E-08 4.35E-08 3.55E-08 3.55E-08 3.00E-08 2.52E-08 2.30E-08 2.30E-08 
9 --5 1.07E-07 6.35E-08 4.97E-08 4.44E-08 3.98E-08 3.56E-08 3.56E-08 3.09E-08 
0. -6 1.50E-07 8.22E-08 5.96E-08 5.90E-08 5.21E-08 4.62E-08 4.62E-08 4.11E-08 
9_ -7 1.69E-07 9.95E-08 7.35E-08 7.21E-08 5.73E-08 5.73E-08 5.08E-08 4.82E-08 
0--8 1.81E-07 1.08E-07 7.71E-08 7.59E-08 6.21E-08 6.02E-08 6.02E-08 5.22E-08 
0. -9 1.87E-07 1.17E-07 7.91E-08 7.73E-08 7.12E-08 6.13E-08 6.13E-08 5.62E-08 
0. -10 1.91E-07 1.20E-07 8.17E-08 7.94E-08 7.69E-08 6.10E-08 6.10E-08 5.76E-08 

Maximum relative deviations across frequencies 
0. -l 8.38E-08 8.38E-08 6.39E-08 6.39E-08 5.12E-08 5.12E-08 3.22E-08 3.22E-08 
0. -2 2.51E-07 2.51E-07 1.38E-07 1.38E-07 1.23E-07 1.23E-07 5.72E-08 5.72E-08 
0. -3 3.32E-07 3.32E-07 1.68E-07 1.68E-07 1.12E-07 1.12E-07 7.00E-08 7.00E-08 
0. -4 3.76E-07 3.76E-07 1.89E-07 1.89E-07 1.39E-07 1.39E-07 1.02E-07 1.02E-07 
0 . -5 4.58E-07 4.58E-07 2.23E-07 2.23E-07 1.64E-07 1.64E-07 1.42E-07 1.42E-07 
0. -6 6.72E-07 6.72E-07 3.34E-07 3.34E-07 2.28E-07 2.28E-07 1.93E-07 1.93E-07 
0 --7 6.52E-07 6.52E-07 3.07E-07 3.07E-07 2.63E-07 2.63E-07 2.14E-07 2.14E-07 
0. -8 8.18E-07 8.18E-07 3.95E-07 3.95E-07 2.78E-07 2.78E-07 2.38E-07 2.38E-07 
0. -9 9.84E-07 9.84E-07 4.79E-07 4.79E-07 2.88E-07 2.88E-07 2.55E-07 2.55E-07 
0. -10 1.06E-06 1.06E-06 5.19E-07 5.19E-07 2.97E-07 2.97E-07 2.62E-07 2.62E-07 
Note. 0_i to 0-io are as defined in Table 2.1. We report 8 largest deviations across 49 
elements of each G(&i)3 computed at 5,000 frequencies to conserve space. 
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Table 2.4: Rank sensitivity analysis 

Differentiation step size x 6q 
1E-02 1E-03 1E-04 1E-05 1E-06 1E-07 1E-08 1E-09 

TOL 
Rank of G{6q) 

1E-03 37 36 36 36 36 36 36 36 
1E-04 37 37 37 36 36 36 36 36 
1E-05 37 37 37 36 36 36 36 36 
1E-06 37 37 37 36 36 36 36 36 
1E-07 38 37 37 37 36 36 36 37 
1E-08 39 37 37 37 36 36 37 37 
1E-09 39 38 38 37 37 36 37 37 
1E-10 39 39 39 37 37 37 37 39 
Default 39 38 37 37 37 36 37 37 
Note. TOL refers to the tolerance level used to determine the rank. Default 
refers to the MATLAB default tolerance level. 
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Table 2.5: Prior distribution of the parameters 

Distribution Mean St. Dev. 

Pga Normal 0.50 0.25 

Hw Beta 0.50 0.20 

Mp Beta 0.50 0.20 
a Normal 0.30 0.05 

0 Beta 0.50 0.15 
< p  Normal 4.00 1.50 

<?c Normal 1.50 0.38 
A Beta 0.70 0.10 

4>p Normal 1.25 0.13 
L\v Beta 0.50 0.15 

Beta 0.50 0.10 
tp Beta 0.50 0.15 

iv Beta 0.50 0.10 
cri Normal 2.00 0.75 
rw Normal 1.50 0.25 

r& y  Normal 0.13 0.05 
rv Normal 0.13 0.05 

P Beta 0.75 0.10 

Pa Beta 0.50 0.20 

Pb Beta 0.50 0.20 
Pg Beta 0.50 0.20 

Pi Beta 0.50 0.20 
Pr Beta 0.50 0.20 

Pp Beta 0.50 0.20 

Pw Beta 0.50 0.20 
<*a Invgamma 0.10 2.00 
0-6 Invgamma 0.10 2.00 

^9 Invgamma 0.10 2.00 
iTi Invgamma 0.10 2.00 
Cff Invgamma 0.10 2.00 
Op Invgamma 0.10 2.00 
Uw Invgamma 0.10 2.00 
7 Normal 0.40 0.10 

IOOC/S-1 -1) Gamma 0.25 0.10 
w Gamma 0.62 0.10 

~ l  Normal 0.00 2.00 
Note. Prior distributions are taken from SW(2007) Dynare code. 
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Table 2.6: Posterior distribution of the parameters 

Full Spectrum and mean SW(2007) Tables 1 A,B 
Mode Mean 5% 95% Mode Mean 5% 95% 

Pga 0.48 0.48 0.38 0.58 0.52 0.52 0.37 0.66 

Pw 0.94 0.92 0.88 0.96 0.88 0.84 0.75 0.93 
Pp 0.68 0.66 0.51 0.78 0.74 0.69 0.54 0.85 
a 0.20 0.20 0.18 0.22 0.19 0.19 0.16 0.21 
iP 0.72 0.70 0.56 0.83 0.54 0.54 0.36 0.72 

V 5.47 5.72 4.26 7.41 5.48 5.74 3.97 7.42 
Oc 1.83 1.81 1.56 2.08 1.39 1.38 1.16 1.59 
A 0.64 0.65 0.59 0.71 0.71 0.71 0.64 0.78 

<t>p 1.60 1.61 1.50 1.71 1.61 1.60 1.48 1.73 
0.55 0.54 0.37 0.72 0.59 0.58 0.38 0.78 
0.84 0.82 0.76 0.87 0.73 0.70 0.60 0.81 

Lp 0.19 0.21 0.10 0.33 0.22 0.24 0.10 0.38 
tp 0.66 0.66 0.60 0.72 0.65 0.66 0.56 0.74 

2.16 2.05 1.22 2.98 1.92 1.83 0.91 2.78 
r*  2.18 2.20 1.95 2.47 2.03 2.04 1.74 2.33 

r Ay 0.24 0.25 0.21 0.28 0.22 0.22 0.18 0.27 
rv 0.13 0.13 0.10 0.17 0.08 0.08 0.05 0.12 
p 0.85 0.85 0.82 0.87 0.81 0.81 0.77 0.85 

Pa 0.98 0.98 0.98 0.99 0.95 0.95 0.94 0.97 
Pb 0.19 0.21 0.11 0.31 0.18 0.22 0.07 0.36 
Pg 0.93 0.92 0.89 0.95 0.97 0.97 0.96 0.99 
Pi 0.71 0.71 0.64 0.78 0.71 0.71 0.61 0.80 
Pr 0.08 0.10 0.03 0.17 0.12 0.15 0.04 0.24 
Pp 0.86 0.85 0.78 0.91 0.90 0.89 0.80 0.96 
Pw 0.97 0.96 0.94 0.98 0.97 0.96 0.94 0.99 
<7<x 0.47 0.48 0.44 0.51 0.45 0.45 0.41 0.50 
<76 0.24 0.24 0.21 0.27 0.24 0.23 0.19 0.27 
ag 0.50 0.51 0.47 0.54 0.52 0.53 0.48 0.58 
CTi 0.47 0.47 0.42 0.53 0.45 0.45 0.37 0.53 
ar 0.23 0.24 0.22 0.25 0.24 0.24 0.22 0.27 
ap 0.14 0.14 0.12 0.17 0.14 0.14 0.11 0.16 
& w 0.25 0.25 0.22 0.27 0.24 0.24 0.20 0.28 
7 0.27 0.27 0.17 0.36 0.43 0.43 0.40 0.45 i—

i 
i i o

" o
 0.17 0.19 0.09 0.32 0.16 0.16 0.07 0.26 

7T 0.71 0.73 0.56 0.91 0.81 0.78 0.61 0.96 
I 0.52 0.41 -0.90 1.76 -0.1 0.53 -1.3 2.32 

Note: 5% and 95% columns refer to the 5th and 95th percentiles of the distribution of RWM 
draws. 
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Table 2.7: Posterior distribution of the dynamic parameters 

Full Spectrum Business cycle 
Mode Mean 5% 95% Mode Mean 5% 95% 

Pga 0.48 0.47 0.38 0.57 0.24 0.24 0.11 0.37 
0.94 0.92 0.88 0.96 0.28 0.32 0.11 0.58 

MP 0.68 0.67 0.53 0.78 0.65 0.55 0.24 0.77 
a 0.21 0.21 0.18 0.23 0.18 0.19 0.16 0.21 
Xj) 0.70 0.68 0.54 0.82 0.52 0.56 0.34 0.77 
<P 5.52 5.76 4.32 7.39 2.55 3.03 2.15 4.37 

<*c 1.90 1.88 1.61 2.16 1.31 1.50 1.18 1.95 
A 0.64 0.64 0.58 0.70 0.58 0.55 0.45 0.66 

<t>p 1.61 1.61 1.51 1.72 1.43 1.46 1.34 1.59 
t"W 0.55 0.55 0.37 0.72 0.58 0.56 0.33 0.79 
£tv 0.84 0.82 0.76 0.87 0.81 0.80 0.73 0.86 
Lp 0.19 0.21 0.10 0.33 0.66 0.61 0.35 0.83 
€p 0.66 0.66 0.60 0.71 0.70 0.69 0.62 0.76 
Ol 2.05 1.97 1.14 2.88 2.66 2.51 1.53 3.53 
TV 2.18 2.20 1.95 2.46 2.11 2.10 1.82 2.40 

T Cyy 0.24 0.25 0.21 0.28 0.21 0.22 0.18 0.26 
rv 0.13 0.13 0.10 0.17 0.15 0.15 0.10 0.20 

P 0.85 0.85 0.82 0.87 0.77 0.76 0.71 0.81 
Pa 0.98 0.98 0.97 0.99 0.82 0.84 0.70 0.94 
Pb 0.19 0.21 0.11 0.31 0.81 0.75 0.60 0.87 
Pg 0.92 0.92 0.89 0.95 0.90 0.89 0.83 0.95 
Pi 0.72 0.72 0.65 0.79 0.70 0.67 0.53 0.79 
Pr 0.08 0.09 0.03 0.17 0.35 0.34 0.13 0.55 
Pp 0.86 0.86 0.79 0.91 0.80 0.75 0.48 0.91 
Pw 0.97 0.96 0.93 0.98 0.57 0.56 0.37 0.73 

0.47 0.48 0.44 0.51 0.47 0.48 0.42 0.55 
Ob 0.24 0.24 0.21 0.27 0.07 0.08 0.06 0.11 
°9 0.50 0.51 0.47 0.54 0.35 0.36 0.32 0.41 
Oi 0.47 0.47 0.42 0.52 0.33 0.38 0.27 0.53 
Ot 0.23 0.24 0.22 0.25 0.12 0.13 0.10 0.16 
av 0.14 0.14 0.12 0.17 0.08 0.08 0.06 0.12 
Oyu 0.25 0.25 0.23 0.27 0.16 0.19 0.12 0.29 
7 0.40 0.41 0.25 0.57 0.39 0.40 0.23 0.56 

1—
> o
 

0
 1 1 0.22 0.26 0.12 0.44 0.23 0.28 0.13 0.47 

Note: 5% and 95% columns refer to the 5th and 95th percentiles of the distribution of 
the RWM draws. 



www.manaraa.com

Table 2.8: Log likelihood and log posterior values at posterior modes 

Posterior Mode 
SW(2007) Full Spectrum Full Spectrum and Mean BC Frequencies 

Log likelihood 
Full Spectrum 2390.46 2440.24 2440.18 1150.83 

Full Spectrum and Mean 2351.66 n/a 2388.28 n/a 
BC Frequencies 511.74 523.42 523.71 577.72 

SW(2007) Full Spectrum Full Spectrum and Mean BC Frequencies 
Log posterior 
Full Spectrum 2375.75 2418.07 2416.88 1153.54 

Full Spectrum and Mean 2368.27 n/a 2412.28 n/a 
BC Frequencies 497.03 501.25 500.40 580.43 

Note. Entries in the table correspond to the log likelihoods/log posteriors, as specified by row labels, evaluated 
at different posterior modes, which were computed by maximizing the log posterior specified by column labels. 
For example, the upper left corner gives the value of the log likelihood constructed using Fourier frequencies 
between 2n/T and 2n(T — 1 )/T with the parameter value set to the posterior mode of SW(2007). 
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Note. The nonidentifieation curve is given by d$(v) /0v -  c(0). 0(0) = 0O, where c{6)  is the eigenvector corresponding to the only zero eigenvalue 

of G(0). The curve is computed recursively using the Euler method, so that 0(t*j+i) = ^(v^) -+- c(0(vj))fe, where h is the step size, fixed at le-04. 
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as a bold dot on the sub-figures. 

Figure 21: The nonidentification curve (<p, A, 7, f3,6) 
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Figure 2-2: The estimated impulse responses of output to shocks 
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Figure 2-3: The estimated impulse responses of labor hours to shocks 
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Figure 2-4: The estimated impulse responses of inflation to shocks 
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Figure 2-5: The estimated impulse responses of interest rate to shocks 
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Figure 2-6: The estimated impulse responses of consumption to shocks 
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Figure 2-7: The estimated impulse responses of investment to shocks 
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Figure 2-8: The estimated impulse responses of wage to shocks 
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Figure 2-9: The estimated impulse responses of output to shocks 
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Figure 210: The estimated impulse responses of labor hours to shocks 
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Figure 211: The estimated impulse responses of inflation to shocks 
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Figure 212: The estimated impulse responses of interest rate to shocks 
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Figure 2 13: The estimated impulse responses of consumption to shocks 
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Figure 2-14: The estimated impulse responses of investment to shocks 
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Figure 2-15: The estimated impulse responses of wage to shocks 
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Figure 216: Model implied and nonparametrically estimated log spectra 
of observables in the model 
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Figure 2-17: Model implied and nonparametrically estimated coherency 
between observables in the model 
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Figure 218: Model implied and nonparametrically estimated coherency 
between observables in the model 
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Figure 2-19: Model implied and nonparametrically estimated coherency 
between observables in the model 
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Chapter 3 

Frequency Domain QML Volatility Estimation 

with Noisy High Frequency Data 

3.1 Introduction 

Integrated volatility (IV) of a financial asset is one of the key quantities in modern finance. 

The ability to obtain accurate estimates of intraday volatility is crucial in the areas of 

derivatives pricing, volatility forecasting, and evaluation of volatility models. It has been 

argued that daily volatility measures constructed from high frequency data capture more 

information and using them delivers better results in the above areas. However, despite the 

ever increasing availability of high frequency data, the issues pertaining to microstructure 

effects prevent researchers from using all of the available observations. The microstructure 

noise is inherent in the data due to various trading frictions, data recording errors, sam

pling methodology (i.e., using transactions or quote data), and becomes more severe at 

higher sampling frequencies. The common practice in financial econometrics literature is 

to aggregate data to lower sampling frequencies of 5 to 30 minutes in order to reduce the 

influence of microstructure noise, which results in discarding most observations in the pro

cess. Ai't-Sahalia et al. (2005) have shown that if the microstructure noise is accounted for 

in estimation, then it is optimal to sample as often as possible. These considerations have 

motivated the growing literature on integrated volatility estimators robust to microstruc

ture noise. Most of such suggested estimators are nonparametric. Specifically, one approach 
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consists of bias corrected subsampling and averaging over different time scales. The seminal 

contribution here is Zhang et al. (2005), who introduced the Two-Scale Realized Volatility 

(TSRV) estimator, which is consistent at the rate of TV1/6 in the presence of i.i.d. noise. 

Later, in the same setting, Zhang (2006) suggested a more involved Multi-Scale Realized 

Volatility (MSRV) estimator with an improved convergence rate of iV1/4, which was shown 

by Gloter and Jacod (2001) to be the optimal rate for this problem. More recently, both 

TSRV and MSRV have been modified by Ait-Sahalia et al. (2011) to be robust to serially 

dependent noise. Another class of estimators is based on weighting autocovariances and 

realized variances. The first estimator of this type was introduced by Zhou (1996) and later 

extended by Hansen and Lunde (2006) to accommodate stochastic volatility and serially 

dependent noise. Although unbiased, these estimators are inconsistent. Barndorff-Nielsen 

et al. (2008) introduced realized kernels and demonstrated that for certain choices of weight 

functions their estimators achieve the optimal convergence rate and can be asymptotically 

equivalent or even more efficient than TSRV and MSRV. However, these type of estimators 

involve choices of tuning parameters, such as the number of subsamples to average over or 

the bandwidth in the case of realized kernels. 

The parametric approach, namely, the maximum likelihood estimator (MLE) in this 

setting has enjoyed less attention, but important contributions have been made recently. 

The simulation studies of Gatheral and Oomen (2010) and Ait-Sahalia and Yu (2009) have 

shown that the MLE estimator introduced in Ait-Sahalia et al. (2005) in the constant 

volatility setting performs well when applied to data generated from stochastic volatility 

models. In a recent paper Xiu (2010) has formalized the parametric approach by showing 

that, when viewed as a quasi-estimator that misspecifies spot volatility to be constant, the 

MLE of Ait-Sahalia et al. (2005) achieves consistency at the optimal rate and has a mixed 
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normal asymptotic distribution. Furthermore, he established that the quasi-maximum 

likelihood (QML) estimator is asymptotically equivalent to the optimal realized kernel with 

an implicitly specified bandwidth, and performs better than alternative realized kernels in 

finite samples. 

While Xiu (2010) has shown that the time domain quasi-maximum likelihood (TDQML) 

estimator works well in the case of the i.i.d. microstructure noise, the likelihood function 

and the asypmtotic properties of the estimator become difficult to analyze once serially 

dependent noise is considered. Even considering the case with i.i.d. noise requires a cum

bersome change of variables to represent the returns as an MA(1) process in order to both 

obtain theoretical results and perform the computations in practice. Xiu (2010) made 

a heuristic argument for combining subsampling with the QML estimator assuming i.i.d. 

noise when a finite order moving average (MA) noise process is suspected. However, this 

approach does not allow for extension to autoregressive (AR) or autoregressive moving av

erage (ARMA) noise specifications, which may be empirically relevant, as argued, among 

others, by Engle and Sun (2007) and A'it-Sahalia et al. (2011) . Furthermore, it is not clear 

whether this time domain estimator can be extended to accommodate dependence between 

the noise and the efficient price process. This motivates us to tackle this problem from the 

frequency domain perspective, using the quasi-maximum likelihood estimation procedure 

that was first proposed by Whittle (1951). Intuitively, the desirable properties of the time 

domain estimator should be preserved by its frequency domain version as well. In addition, 

it should be more tractable analytically, allowing for more flexibility in specifying the time 

series properties of the noise process, as well as afford a potential possibility to incorporate 

endogenous noise by including a cross-spectrum term into the quasi-likelihood. 

Although the literature on volatility estimation is vast, relatively few papers consid
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ered the problem from the frequency domain perspective. Malliavin and Mancino (2002) 

introduced the Fourier estimator, which is based on the truncated Dirichlet kernel. Man

cino and Sanfelici (2008) developed a variant of this estimator using the Fejer kernel, and 

Malliavin and Mancino (2009) extended it to the multivariate setting and provided the 

optimal number of Fourier coefficients to minimize the mean squared error (MSE) of the 

estimator. However, these estimators are rarely used in the literature and Gatheral and 

Oomen (2010) found that they are dominated in finite samples by the time domain QML 

and realized kernel estimators. The work closest to the current chapter is the article by 

Olhede et al. (2009), who use the type of FDQML considered in this chapter in order to 

compute weights for their shrinkage estimator of the integrated volatility that takes the 

form of the sum of weighted periodograms of contaminated log returns. 

We conduct our analysis under the same assumption on the log price process as in 

Xiu (2010), namely that it follows a Brownian motion with stochastic volatility that is a 

positive and locally bounded Brownian semimartingale. This specification of the stochastic 

volatility is quite general and encompasses most continuous time financial models (e.g., see 

Jacod (2008), hypothesis (L — s)). We also follow Xiu (2010) in omitting the drift term in 

our specification in order to simplify the algebra as he has argued that the effects of the 

drift are asymptotically negligible. The data is assumed to be equally spaced in time and 

sampled at a very high frequency. The asymptotic results are thus considered within the 

infill asymptotics framework where the number of observations within a fixed time interval, 

e.g., one day, goes to infinity. 

There are two conceptual complications for FDQML estimation that arise in this frame

work. First, as the volatility of the log return process is stochastic, it is nonstationary and 

thus its spectral density in the traditional sense is not defined. This presents a problem, 
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because the Whittle likelihood that is maximized to obtain FDQML estimates requires 

specification of the spectral density of the underlying data generating process. Second, the 

integrated volatility that we are trying to estimate is a random object itself. We suggest to 

deal with the first issue by replacing the spectral density of the log returns by the variance 

of their discrete Fourier transform. The second issue can be circumvented by using the 

concept of stable convergence, which is used extensively in the finance literature, to take 

expectations and derive the asymptotic distribution conditional on the realization of the 

integrated volatility on a given day. 

We begin by considering the case without microstructure noise present. In this case, 

the FDQML estimator reduces to the well known realized variance (RV) estimator, whose 

properties were studied, among others, by Barndorff-Nielsen and Shephard (2002). This is 

a very intuitive result, as RV is known to be consistent and efficient in this case. However, 

it was demonstrated by Zhang et al. (2005) that it consistently estimates the variance 

of the noise instead of IV when i.i.d. microstructure noise is present, a problem that 

motivated the search for alternative estimators. We proceed to include the i.i.d. noise into 

our specification, which amounts to adding a term corresponding to the spectral density 

of the first differenced noise into the Whittle likelihood. The closed form solution in this 

case is not available and hence the maximization is done numerically. In this case, the 

simulation results suggest that the asymptotic properties of the estimator are the same 

as in Xiu (2010). Finally, we suggest a more general estimation approach that admits 

microstructure noise that follows a linear stationary process. Berk (1974) has shown that 

the spectral density of a linear process can be consistently estimated by fitting a finite 

order AR model, with the order of the approximation growing with sample size, while 

Shibata (1981) suggested that using the Akaike's (1973) information criterion (AIC) for lag 



www.manaraa.com

147 

selection in such a procedure is asymptotically efficient. We therefore consider estimating 

integrated volatility by FDQML while specifying the spectrum of the noise as that of an 

AR process, with the order chosen using AIC. We illustrate the application of the method 

via simulation, by considering two empirically relevant microstructure noise specifications 

given by the AR(1) and ARMA( 1,1) processes. Our simulations show that the proposed 

FDQML performs adequately well, while the TDQML estimator for these processes is very 

difficult to specify and may not be feasible in practice. 

The rest of this chapter is organized as follows. Section 3.2 introduces the high fre

quency data setting that we are going to work with. Section 3.3 puts forward the FDQML 

estimator, whose conjectured asymptotic properties are discussed in Section 3.4. Section 

3.5 presents the findings of the simulation study, and, finally, Section 3.6 concludes. 

3.2 Setup 

Throughout the chapter, we work with the following setup. The latent efficient log price 

process is given by 

where Xo = 0, W t  is a Brownian motion, and the stochastic volatility process at is assumed 

to be a positive and locally bounded Brownian semimartingale. This assumption on at is 

quite general, allowing for almost any existing continuous time stochastic volatility model 

(see Hypothesis (L — s) in Jacod (2008) for more details). The object of estimation, given 

o 

is the integrated volatility of the above process over some fixed interval [0, T], which can 

be thought of as a trading day for most empirical applications. Here we assume that the 

dX t  = a tdW t  

by 
T 
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observed log prices are regularly spaced with N + 1 observations per day, and indexed by 

Tfc = fcA, k — 0,1,2..., N. The observations lie within the interval [0, T], so T = NA. 

Since T is assumed to be fixed, the asymptotics are considered with N —> oo and A -> 0 

simultaneously, which is a standard framework in the literature. To shorten notation, 

denote the log return between periods r, and rt_i by Yj. 

When noise is present, the econometrician observes the contaminated process 

X T i  = X T i  + Ur„ 

where {U T i }  is the microstructure noise process independent of {Xt}. In general, {U T t } can 

be assumed to be a stationary ARMA(P,Q) process 

A(L)U T i  = B(L)e T i ,  

p i  
where L denotes the lag operator ,  A(L) — (1  — 4>kL ) ,  B(L) — (1  +  VjLy1), and en 

fc=i j=l 

is assumed to be i.i.d. with mean zero and variance a2. 

3.3 FDQML estimator 

Let the Fourier frequencies be denoted by Aj  — 2nj /N,  j  =  1,2,. . . ,  N — 1). Let uiy  (Aj) 

denote the discrete Fourier transforms given by 

1 A 
-  "Tt t  Yl Y kexp(- iXjk) ,  j  =  1, 2 , . . . ,N —  1 .  

Since the volatility of the log price increment process is stochastic, it is not second order 

stationary and its spectral density is not defined in the traditional sense. Instead, we will 

work with the covariance of its discrete Fourier transform defined by 

Afc) = £(u/x(A>x(Afcn - EiuxiX^EiuxiXk)*), 
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where the asterisks denote conjugate transpose, and we will denote the variance (i.e., when 

j = k) simply by fx(^j) to cut down on notation. The microstructure noise process 

is stationary by assumption, so we can directly compute the spectral density of its first 

difference as 

. . . .  .  . . .  . .  | 2  a 2  | B ( e x p ( — i A , ) ) | 2  

f u ( X j )  =  |1 - exp(—iAj))| ' / P .. 2  • 
|;4(exp(—iAj))| 

Since /V(0,t) is a random quantity itself, stable convergence arguments are used for 

analysis. Hence, in the rest of the chapter, all expectations are taken conditional on a 

particular realization of Using this, we obtain 

=  E ( u x ( X ^ x ( X j ) ' )  = -  X r , _ , ) 2 )  =  

T T 

= h J E(at)dt = h J a*dt-
0 0 

Hence, the contribution of each frequency to the integrated volatility is approximately the 

same. This resemblance to the spectral properties of white noise motivates us to consider 

FDQML estimation of /V(0,t) by purposely misspecifying the spectral density of the latent 

log return as if its volatility were constant. In order to remove dependence on N in the 

estimated parameter, we define 
T 

o2 = ̂  J crjdt 

o 

to be the parameter of interest, which implies fxi^j) = <72A. 

Following Whittle (1951) and using + f u ( ^ j ) )  as a proxy for the spectral 

density of the contaminated log returns, the Whittle likelihood for our problem is given, 
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up to a constant multiplication, by 

m - E + M M )  + U x (X jX "i^e)Y 

where 9 is the vector of estimated parameters ( a2 , a2 and any additional AR or MA 

coefficients of the noise process), and Iy(^j) — wy(Aj)u>y(Aj)* is the periodogram. The 

estimates 6 axe obtained by minimizing L(6). Next, we describe several empirically rele

vant microstructure noise specifications and discuss statistical properties of the FDQML 

estimator in each case. 

3.4 Statistical properties of FDQML 

3.4.1 Baseline case: no noise 

First, it instructive to consider the simplest case where the microstructure noise is absent, 

i.e., A(L) = B{L) = 1 and a2 = 0. The Whittle likelihood in this case is given by 

L(#)-X>g(a2A) + ^|l, 
j = l 

with 6 —  a 2 .  Taking first order condition and setting it equal to zero yields the estimator 

?2 = W^a1>(U 

Using the fact that the sum of periodograms across the Fourier frequencies is equal to the 

sum of squared returns (see p. 332 in Brockwell and Davis (2006)), we can write 

lim a 2  —  ^ V Y 2 ,  
N-* oo T ^ 1 

j=l 

which coincides with the traditional realized variance (RV) estimator. This is not entirely 

surprising, as Xiu (2010) obtained RV as a time domain QML estimator in the absence of 
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noise as well. It is well known that RV is both consistent and efficient in the absence of 

noise. Hence, there are no gains or losses compared to the standard estimator associated 

with using FDQML in the absence of noise. 

3.4.2 i.i.d. microstructure noise 

We next consider a very popular case in the literature where microstructure noise is i.i.d. 

(0, a2). The log returns now become 

Yi = XTi - XTi_x = XTi - XTi_1 + UTi - UTi_„ 

n 
and have an MA(1) structure with variance of Yt given by J afdt + 2a2 and the first order 

Tt- 1 

autocovariance equal to (—a2). The spectral density of the first differenced noise is simply 

fu( X j )  — a2 |1 — exp(—iAj)|2 = 2a2(l — cos(Aj)). 

The Whittle likelihood in this case becomes 

m = £ log(i?2A + 2a2 (1 - cos(Aj))) + (g2A + 2^((
1
Al)

cos(A.))). (3-D 

with 0 — (a2, a2)'. There are no closed form expressions for 0, so the maximization has to be 

performed numerically. Given that FDQML and TDQML are based on the same principle, 

and the quasi-likelihood (3.1) is the frequency domain approximation to the time domain 

Gaussian quasi-likelihood used in Xiu (2010), we conjecture that the two estimators share 

the same asymptotic properties in this case. These are summarized in Conjectures 1 and 

2 below. 

Conjecture 3.1. Given the log price process defined in Section 3.2 and UTl that is i.i.d. 

2 2 ^ 
(0, a2), the FDQML estimator 0 = (a ,a2)' satisfies: a — ^ f a2dt —» 0 and a2 — a2 —> 0. 

o 
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Conjecture 3.2. Given the log price process defined in Section 3.2 and UTl that is i.i.d. 
^2 

(0, a2), the asymptotic distribution of the FDQML estimator 6 = (a , a2)' is given by 

T 
N 1 / 4  a  - ± f c r ? d t  j  \  c  

AT1/2 (a2 - a2) 

/ / 

MTV 

V 

5a / c f d t  
0 

7t \ 1/2 

3a 

V 

+ 

0 

T2 

3/2 

0 

/ 2a4 + cum4[£/]/ 

where ̂  denotes stable convergence in cr{X), cum^[U] denotes the fourth order cumulant 

of the noise process, and MN denotes mixed normal distribution. 

Unfortunately, the asymptotic distribution depends on the integrated quarticity, which 

is not straightforward to estimate in this setting. One feasible solution is to use the consis

tent preaveraging estimator of the integrated quarticity as in Jacod et al. (2009) in order 

to obtain confidence intervals based on the limiting distribution above. 

3.4.3 Microstructure noise as a stationary linear process 

Several authors have argued that the assumption of i.i.d. microstructure noise is overly 

simplistic. Hansen and Lunde (2006), Ait-Sahalia et al. (2011) and Engle and Sun (2007), 

among others, have concluded, based on both theoretical and empirical evidence, that mi

crostructure noise demonstrates serial dependence and is likely correlated with the efficient 

price process. The above papers put forward different specifications for the independent 

noise component, based on empirical evidence from assets with different characteristics, 

that include MA, AR, and ARMA processes. It is therefore desirable for the practitioner 

to use an estimator that is agnostic to the underlying microstructure noise process. 

Shibata (1981) has shown that, under some conditions, fitting an AR model with the 
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order selected using AIC produces an asymptotically optimal estimate of the spectral den

sity of a stationary linear process representable as AR(oo). We suggest to incorporate a 

similar idea to obtain an FDQML estimation procedure that allows for the microstructure 

noise to follow an arbitrary stationary linear process. Specifically, the estimator solves 

f N - 1  

min 
a2,a*,[^,P 

2 \J2 1oS(<72A + 2a2(l - cos(Aj))) + + 2 ( P  + 2) 

where fu (Xj) is given by 

r x 2a2(1 — cos(Aj)) 
fu{*j) — p 2' 

1 - E ^k(exp(~iAj))k 

k=1 

We conjecture that such an estimator should retain the desirable properties (consistency 

and asymptotic mixed normality), while allowing for a broad family of the underlying noise 

processes. The next section investigates these conjectures via simulations. 

3.5 Simulation study 

In this section we conduct Monte Carlo simulations to evaluate the performance of the 

FDQML estimator in the various settings described in the previous section. We generate 

samples of one day length, so that, in annual units, T = 1/252. The true data generating 

process for stochastic volatility follows the Heston (1993) model with the Cox-Ingersoll-Ross 

(CIR) volatility process (see Cox et al. (1985)): 

d X t  =  a t d W n  

dof = k(v — a^)dt + sotdW2t, 
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where W\t and W^t are independent Brownian motions. The parameters of the model tire 

chosen to be empirically relevant and are based on a similar simulation setup in Ai't-Sahalia 

and Yu (2009). Specifically, we choose v = 0.1 , which in this model is the unconditional 

mean of of. The mean reversion parameter « is set to 5, the volatility of volatility s is 

set to 0.5. The initial value crfi is drawn from the CIR stationary distribution, which is 

Gamma(2«u/s2, s2/2k). The total number of simulated samples is 10,000. 

First, we consider the case where the price process is contaminated by the i.i.d. Gaussian 

noise component with the standard deviation (a) of 0.1%. We report the results for both 

FDQML and TDQML estimators in order to ascertain that their asymptotic properties are 

the same. Table 3.1 contains the summary statistics for the bias (a2 — Jq (r2dt^oi the 

QML estimators at sampling frequencies ranging from 1 second to 3 minutes, where the 

latter term is evaluated using the discrete integral approximation 

We can see that the two estimators produce very similar results, although FDQML still has 

a small bias even at the highest sampling frequency, whereas TDQML is unbiased. However, 

the bias is still negligible as it corresponds to about 0.5% of the mean of the integrated 

volatilities in this study. Standard deviations and root mean square errors (RMSE) are very 

similar, with TDQML having a 1-2% edge across all sampling frequencies. Figure 3.1 plots 

the distribution of the bias of the FDQML integrated volatility estimates, standardized 

using the variance expression in Conjecture 3.2, against the standard normal distribution. 

We see that it gets very close to normal as the sampling frequency increases. It can be 

seen from Figure 3. that the distribution of standardized estimates of the noise variance 

converges to normal much faster, as implied by theory. We do not show the corresponding 

t=i 
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distributions for TDQML as they are virtually identical and would not be distinguishable 

on the graphs. Overall, the results provide support for Conjectures 3.1 and 3.2, namely, 

that in the case of i.i.d. microstructure noise the FDQML estimator shares the same 

asymptotic properties with the TDQML of Xiu (2010). 

Second, we specify the microstructure noise as an AR(1) process with the coefficient 

of —0.7, keeping the standard deviation of the shock at 0.1%. This simulation design is 

motivated by the empirical findings of Ai't-Sahalia et al. (2011), who estimate that log 

prices of some highly liquid stocks like Microsoft or Intel are characterized by negative AR 

noise. The results are reported in Table 3.2. We do not include the results for TDQML, 

as it is very difficult to specify the criterion function for this case, while the misspecified 

TDQML assuming i.i.d. noise performs very poorly. We observe that the bias increases 

dramatically for lower sampling frequencies (about 6% of the mean value of integrated 

volatility) compared to the i.i.d. case, but decreases substantially as the interval between 

observations shrinks , down to about 0.7% of the average true value. The RMSE decreases 

with the increase in the sample size, in line with the results observed for the i.i.d. noise 

case. The distribution of the integrated volatility estimate appears to follow a mixture of 

normals. However, standardizing the bias via a naive replacement of a2 in the distribution 

in Conjecture 3.2 by the variance of the AR process confirms that the result derived under 

the i.i.d. noise assumption does not carry over to the model under consideration. The 

estimates of both the autoregressive coefficient and the variance of the shock converge 

fast to a normal distribution, similarly to the case with i.i.d. noise. Overall, we see that 

FDQML performs reasonably well under this simulation design, while using TDQML is not 

feasible due to analytical intractability. 

Finally, we follow Engle and Sun (2007) by letting the noise component follow an 
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ARMA(1,1) process, with the AR and MA coefficients of 0.5 and 0.1 respectively and the 

same shock variance as in the previous case. We estimate integrated volatility by approx

imating the spectral density of the first differenced noise with that of a first differenced 

AR process with the order chosen by AIC. Table 3.3 contains the simulation results. The 

resulting order of the AR approximation chosen for all sampling frequencies was 1, perhaps 

due to the fact that the MA coefficient of the noise process is relatively small. Overall, the 

bias and RMSE performance is very similar to the case with AR(1) noise, with a slight edge 

in 1 second and 5 second frequencies. This demonstrates that, even when approximating 

an unknown stationary linear noise process with a finite order autoregression, the FDQML 

estimator delivers satisfactory results. 

3.6 Conclusion 

In this chapter we have suggested to use the FDQML estimator for integrated volatility es

timation in the presence of market microstructure noise. The proposed estimator coincides 

with RV in the absence of noise, and we conjecture that it possesses the same asymptotic 

properties as its time domain counterpart studied in Xiu (2010) when i.i.d. noise is consid

ered. Furthermore, we propose extending our estimator to accommodate microstructure 

noise that follows a stationary linear process by approximating its spectral density with an 

autoregression of finite order chosen by AIC. The simulation study appears to confirm our 

former conjecture and shows that the latter estimation procedure performs relatively well. 

The above findings pave the road to deriving relevant theoretical results characterizing 

asymptotic properties of the FDQML estimator under the considered assumptions on the 

microstructure noise. More importantly, the frequency domain approach appears well 

suited for tackling the issue of endogenous noise. Such a modification will amount to 
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including an extra term in the likelihood that corresponds to the cross-spectrum of the 

latent price process and noise. Another important challenge is that of consistent estimation 

of the integrated quarticity within the FDQML framework for construction of confidence 

intervals. 
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3.7 Supplementary materials appendix 3 

Table 3.1: Summary statistics for the bias of IV estimates under i.i.d. 
noise 

1 sec 5 sec 10 sec 20 sec 30 sec 1 min 3min 
FDQML 

Mean -0.0509 -0.0507 -0.0478 -0.0474 -0.0493 -0.0436 -0.0460 
Std. Dev. 0.5493 0.8317 1.0055 1.2488 1.4296 1.8106 2.6853 

RMSE 0.5516 0.8332 1.0066 1.2496 1.4303 1.8111 2.6856 
TDQML 

Mean 0.0001 -0.0003 0.0020 0.0029 0.0002 0.0068 0.0014 
Std. Dev. 0.5431 0.8265 0.9999 1.2403 1.4177 1.7955 2.6537 

RMSE 0.5431 0.8264 0.9999 1.2402 1.4176 1.7954 2.6536 
Note. Statistics computed for the bias of the indicated integrated volatility estimates 
and multiplied by 100. 

Table 3.2: Summary statistics for the bias of IV estimates under AR(1) 
noise 

1 sec 5 sec 10 sec 20 sec 30 sec 1 min 3min 

Mean 0.0717 0.0693 0.0379 0.0152 -0.0012 -0.1269 -0.6064 
Std. Dev. 0.4386 0.9620 1.1109 1.4251 1.6585 2.2276 3.7207 

RMSE 0.4444 0.9644 1.1115 1.4251 1.6585 2.2311 3.7696 
Note. Statistics computed for the bias of the FDQML integrated volatility estimates 
and multiplied by 100. 
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Table 3.3: Summary statistics for the bias of IV estimates under 
ARM A (1,1) noise 

1 sec 5 sec 10 sec 20 sec 30 sec 1 min 3min 

Mean 0.0561 0.0409 0.0379 0.0152 -0.0012 -0.1304 -1.2679 
Std. Dev. 0.3981 0.8928 1.1109 1.4251 1.6585 2.2202 3.9699 

RMSE 0.4020 0.8937 1.1115 1.4251 1.6585 2.2239 4.1672 
Note. Statistics computed for the bias of the FDQML integrated volatility estimates 
and multiplied by 100. 
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